File size: 5,966 Bytes
2288165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
842a801
2288165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
842a801
2288165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6118a
f384b4c
87ce27b
2288165
 
cc6118a
2288165
cc6118a
aa6b115
cc6118a
d6f050f
cc6118a
d6f050f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6118a
d6f050f
 
 
 
 
 
2288165
f384b4c
 
 
 
 
 
 
 
2288165
d6f050f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import re
import streamlit as st
import pandas as pd
import numpy as np
from transformers import CLIPProcessor, CLIPModel
from st_clickable_images import clickable_images

def load():
    model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
    processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
    df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
    embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
    for k in [0, 1]:
        embeddings[k] = embeddings[k] / np.linalg.norm(
            embeddings[k], axis=1, keepdims=True
        )
    return model, processor, df, embeddings

model, processor, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}

def compute_text_embeddings(list_of_strings):
    inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
    result = model.get_text_features(**inputs).detach().numpy()
    return result / np.linalg.norm(result, axis=1, keepdims=True)

def image_search(query, corpus, max_results=24):
    positive_embeddings = None

    def concatenate_embeddings(e1, e2):
        if e1 is None:
            return e2
        else:
            return np.concatenate((e1, e2), axis=0)

    splitted_query = query.split("EXCLUDING ")
    dot_product = 0
    k = 0 if corpus == "Unsplash" else 1
    if len(splitted_query[0]) > 0:
        positive_queries = splitted_query[0].split(";")
        for positive_query in positive_queries:
            match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
            if match:
                corpus2, idx, remainder = match.groups()
                idx, remainder = int(idx), remainder.strip()
                k2 = 0 if corpus2 == "Unsplash" else 1
                positive_embeddings = concatenate_embeddings(
                    positive_embeddings, embeddings[k2][idx : idx + 1, :]
                )
                if len(remainder) > 0:
                    positive_embeddings = concatenate_embeddings(
                        positive_embeddings, compute_text_embeddings([remainder])
                    )
            else:
                positive_embeddings = concatenate_embeddings(
                    positive_embeddings, compute_text_embeddings([positive_query])
                )
        dot_product = embeddings[k] @ positive_embeddings.T
        dot_product = dot_product - np.median(dot_product, axis=0)
        dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
        dot_product = np.min(dot_product, axis=1)

    if len(splitted_query) > 1:
        negative_queries = (" ".join(splitted_query[1:])).split(";")
        negative_embeddings = compute_text_embeddings(negative_queries)
        dot_product2 = embeddings[k] @ negative_embeddings.T
        dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
        dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
        dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)

    results = np.argsort(dot_product)[-1 : -max_results - 1 : -1]
    return [
        (
            df[k].iloc[i]["path"],
            df[k].iloc[i]["tooltip"] + source[k],
            i,
        )
        for i in results
    ]

def main():
    st.markdown(
        """
              <style>
              .block-container{
                max-width: 1200px;
              }
              div.row-widget.stRadio > div{
                flex-direction:row;
                display: flex;
                justify-content: center;
              }
              div.row-widget.stRadio > div > label{
                margin-left: 5px;
                margin-right: 5px;
              }
              section.main>div:first-child {
                padding-top: 0px;
              }
              section:not(.main)>div:first-child {
                padding-top: 30px;
              }
              div.reportview-container > section:first-child{
                max-width: 320px;
              }
              #MainMenu {
                visibility: hidden;
              }
              footer {
                visibility: hidden;
              }
              </style>""",
        unsafe_allow_html=True,
    )
    
    st.markdown("# πŸ” CLIP Image Search")
    

    if "query" in st.session_state:
        query = st.sidebar.text_input("Query", value=st.session_state["query"])
    else:
        query = st.sidebar.text_input("Query", value="lighthouse")
    corpus = "Unsplash"
    
    # Wrap the content inside st.spinner for the "Submit" button
    if st.sidebar.button("Submit"):
        with st.spinner("Searching..."):
            if len(query) > 0:
                results = image_search(query, corpus)
                clicked = clickable_images(
                    [result[0] for result in results],
                    titles=[result[1] for result in results],
                    div_style={
                        "display": "flex",
                        "justify-content": "center",
                        "flex-wrap": "wrap",
                    },
                    img_style={"margin": "2px", "height": "200px"},
                )
                if clicked >= 0:
                    change_query = False
                    if "last_clicked" not in st.session_state:
                        change_query = True
                    else:
                        if clicked != st.session_state["last_clicked"]:
                            change_query = True
                    if change_query:
                        st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]"
                        st.experimental_rerun()

    st.sidebar.info("""
    Enter your query and hit enter
    
    - Click image to find similar images
    - Use ';'' to combine multiple queries
    - Use 'EXCLUDING' to exclude a query
                    """)
    
if __name__ == "__main__":
    main()