Spaces:
Runtime error
Runtime error
Added bg_app.py and requirements.txt
Browse files- bg_app.py +103 -0
- requirements.txt +15 -1
bg_app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#bg_app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from langchain.schema import HumanMessage, AIMessage
|
5 |
+
from langchain.chains import create_retrieval_chain, create_history_aware_retriever
|
6 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.llms import HuggingFacePipeline
|
9 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
11 |
+
|
12 |
+
# Load the pre-existing vector store
|
13 |
+
vector_store = Chroma(persist_directory="./bg_data_english")
|
14 |
+
similarity_retriever = vector_store.as_retriever(
|
15 |
+
search_type="similarity_score_threshold", search_kwargs={"k": 5, "score_threshold": 0.2}
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load the LLM
|
19 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
|
21 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
"google/gemma-2-9b-it",
|
23 |
+
quantization_config=quantization_config,
|
24 |
+
)
|
25 |
+
text_generation_pipeline = pipeline(
|
26 |
+
model=llm_model,
|
27 |
+
tokenizer=tokenizer,
|
28 |
+
task="text-generation",
|
29 |
+
return_full_text=False,
|
30 |
+
max_new_tokens=350,
|
31 |
+
)
|
32 |
+
llm = HuggingFacePipeline(pipeline=text_generation_pipeline)
|
33 |
+
|
34 |
+
# Reformulating user queries with history context
|
35 |
+
rephrase_system_prompt = """Given a chat history and the latest user question
|
36 |
+
which might reference context in the chat history, formulate a standalone question
|
37 |
+
which can be understood without the chat history. Do NOT answer the question,
|
38 |
+
just reformulate it if needed and otherwise return it as is."""
|
39 |
+
|
40 |
+
rephrase_prompt = ChatPromptTemplate.from_messages(
|
41 |
+
[
|
42 |
+
("system", rephrase_system_prompt),
|
43 |
+
MessagesPlaceholder("chat_history"),
|
44 |
+
("human", "{input}"),
|
45 |
+
]
|
46 |
+
)
|
47 |
+
|
48 |
+
history_aware_retriever = create_history_aware_retriever(llm, similarity_retriever, rephrase_prompt)
|
49 |
+
|
50 |
+
# Define the question-answering system prompt
|
51 |
+
qa_system_prompt = """You are a saintly guide inspired by the teachings of the Bhagavad Gita, offering wisdom and moral guidance. Answer questions in a friendly and compassionate tone, drawing insights from the scripture to help users with their life challenges.
|
52 |
+
Use the provided context to craft your response and remain faithful to the philosophy of the Bhagavad Gita.
|
53 |
+
If you don't know the answer, humbly admit it or request the user to clarify or provide more details.
|
54 |
+
Limit your response to 5 lines unless the user explicitly asks for more explanation.
|
55 |
+
|
56 |
+
Question:
|
57 |
+
{input}
|
58 |
+
|
59 |
+
Context:
|
60 |
+
{context}
|
61 |
+
|
62 |
+
Answer:
|
63 |
+
"""
|
64 |
+
|
65 |
+
qa_prompt = ChatPromptTemplate.from_messages(
|
66 |
+
[
|
67 |
+
("system", qa_system_prompt),
|
68 |
+
MessagesPlaceholder("chat_history"),
|
69 |
+
("human", "{input}"),
|
70 |
+
]
|
71 |
+
)
|
72 |
+
|
73 |
+
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
74 |
+
qa_rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
75 |
+
|
76 |
+
# Function to generate answers
|
77 |
+
chat_history = []
|
78 |
+
|
79 |
+
def chat(question):
|
80 |
+
global chat_history
|
81 |
+
response = qa_rag_chain.invoke({"input": question, "chat_history": chat_history})
|
82 |
+
answer = response["answer"].strip()
|
83 |
+
if answer.startswith("Saintly Guide:"):
|
84 |
+
answer = answer[len("Saintly Guide:"):].strip()
|
85 |
+
elif answer.startswith("AI:"):
|
86 |
+
answer = answer[len("AI:"):].strip()
|
87 |
+
chat_history.extend([HumanMessage(content=question), AIMessage(content=response["answer"])])
|
88 |
+
return answer
|
89 |
+
|
90 |
+
# Create Gradio interface
|
91 |
+
interface = gr.Interface(
|
92 |
+
fn=chat,
|
93 |
+
inputs=gr.Textbox(label="Ask your question", placeholder="What's troubling you?"),
|
94 |
+
outputs=gr.Textbox(label="Answer"),
|
95 |
+
title="Bhagavad Gita Chatbot",
|
96 |
+
description="Ask questions inspired by the teachings of the Bhagavad Gita and receive saintly guidance."
|
97 |
+
)
|
98 |
+
|
99 |
+
# Launch the app
|
100 |
+
if __name__ == "__main__":
|
101 |
+
interface.launch()
|
102 |
+
|
103 |
+
|
requirements.txt
CHANGED
@@ -1 +1,15 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
gradio
|
4 |
+
transformers
|
5 |
+
langchain>=0.0.227
|
6 |
+
langchain-hub
|
7 |
+
langchain-vectorstores
|
8 |
+
sentence-transformers
|
9 |
+
torch
|
10 |
+
bitsandbytes
|
11 |
+
accelerate
|
12 |
+
chromadb
|
13 |
+
huggingface-hub
|
14 |
+
pydantic
|
15 |
+
typing-extensions
|