|
import gradio as gr |
|
from transformers import pipeline |
|
from PIL import Image, ImageFilter |
|
import numpy as np |
|
|
|
segmentation_model = pipeline("image-segmentation", model="nvidia/segformer-b1-finetuned-cityscapes-1024-1024") |
|
depth_estimator = pipeline("depth-estimation", model="Intel/zoedepth-nyu-kitti") |
|
|
|
def process_image(input_image, method, blur_intensity): |
|
""" |
|
Process the input image using one of two methods: |
|
|
|
1. Segmentation Blur Model: |
|
- Uses segmentation to extract a foreground mask. |
|
- Applies Gaussian blur to the background. |
|
- Composites the final image. |
|
|
|
2. Monocular Depth Estimation Model: |
|
- Uses depth estimation to generate a depth map. |
|
- Normalizes the depth map to be used as a blending mask. |
|
- Blends a fully blurred version with the original image. |
|
|
|
Returns: |
|
- output_image: final composited image. |
|
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based). |
|
""" |
|
input_image = input_image.convert("RGB") |
|
|
|
if method == "Segmentation Blur Model": |
|
results = segmentation_model(input_image) |
|
foreground_mask = results[-1]["mask"] |
|
foreground_mask = foreground_mask.convert("L") |
|
binary_mask = foreground_mask.point(lambda p: 255 if p > 128 else 0) |
|
|
|
blurred_background = input_image.filter(ImageFilter.GaussianBlur(radius=blur_intensity)) |
|
|
|
output_image = Image.composite(input_image, blurred_background, binary_mask) |
|
mask_image = binary_mask |
|
|
|
elif method == "Monocular Depth Estimation Model": |
|
depth_results = depth_estimator(input_image) |
|
depth_map = depth_results["depth"] |
|
|
|
depth_array = np.array(depth_map).astype(np.float32) |
|
norm = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min() + 1e-8) |
|
normalized_depth = (norm * 255).astype(np.uint8) |
|
mask_image = Image.fromarray(normalized_depth) |
|
|
|
blurred_image = input_image.filter(ImageFilter.GaussianBlur(radius=blur_intensity)) |
|
|
|
orig_np = np.array(input_image).astype(np.float32) |
|
blur_np = np.array(blurred_image).astype(np.float32) |
|
alpha = normalized_depth[..., np.newaxis] / 255.0 |
|
|
|
blended_np = (1 - alpha) * orig_np + alpha * blur_np |
|
blended_np = np.clip(blended_np, 0, 255).astype(np.uint8) |
|
output_image = Image.fromarray(blended_np) |
|
|
|
else: |
|
output_image = input_image |
|
mask_image = input_image.convert("L") |
|
|
|
return output_image, mask_image |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## FocusFusion: Segmentation & Depth Blur") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="pil") |
|
method = gr.Radio(label="Processing Method", |
|
choices=["Segmentation Blur Model", "Monocular Depth Estimation Model"], |
|
value="Segmentation Blur Model") |
|
blur_intensity = gr.Slider(label="Blur Intensity (sigma)", |
|
minimum=1, maximum=30, step=1, value=15) |
|
run_button = gr.Button("Process Image") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Output Image") |
|
mask_output = gr.Image(label="Mask") |
|
|
|
run_button.click( |
|
fn=process_image, |
|
inputs=[input_image, method, blur_intensity], |
|
outputs=[output_image, mask_output] |
|
) |
|
|
|
demo.launch() |