BLURB / app.py
SOSSY's picture
Update app.py
1daaec8 verified
import gradio as gr
from transformers import pipeline
from PIL import Image, ImageFilter
import numpy as np
segmentation_model = pipeline("image-segmentation", model="nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
depth_estimator = pipeline("depth-estimation", model="Intel/zoedepth-nyu-kitti")
def process_image(input_image, method, blur_intensity):
"""
Process the input image using one of two methods:
1. Segmentation Blur Model:
- Uses segmentation to extract a foreground mask.
- Applies Gaussian blur to the background.
- Composites the final image.
2. Monocular Depth Estimation Model:
- Uses depth estimation to generate a depth map.
- Normalizes the depth map to be used as a blending mask.
- Blends a fully blurred version with the original image.
Returns:
- output_image: final composited image.
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based).
"""
input_image = input_image.convert("RGB")
if method == "Segmentation Blur Model":
results = segmentation_model(input_image)
foreground_mask = results[-1]["mask"]
foreground_mask = foreground_mask.convert("L")
binary_mask = foreground_mask.point(lambda p: 255 if p > 128 else 0)
blurred_background = input_image.filter(ImageFilter.GaussianBlur(radius=blur_intensity))
output_image = Image.composite(input_image, blurred_background, binary_mask)
mask_image = binary_mask
elif method == "Monocular Depth Estimation Model":
depth_results = depth_estimator(input_image)
depth_map = depth_results["depth"]
depth_array = np.array(depth_map).astype(np.float32)
norm = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min() + 1e-8)
normalized_depth = (norm * 255).astype(np.uint8)
mask_image = Image.fromarray(normalized_depth)
blurred_image = input_image.filter(ImageFilter.GaussianBlur(radius=blur_intensity))
orig_np = np.array(input_image).astype(np.float32)
blur_np = np.array(blurred_image).astype(np.float32)
alpha = normalized_depth[..., np.newaxis] / 255.0
blended_np = (1 - alpha) * orig_np + alpha * blur_np
blended_np = np.clip(blended_np, 0, 255).astype(np.uint8)
output_image = Image.fromarray(blended_np)
else:
output_image = input_image
mask_image = input_image.convert("L")
return output_image, mask_image
with gr.Blocks() as demo:
gr.Markdown("## FocusFusion: Segmentation & Depth Blur")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
method = gr.Radio(label="Processing Method",
choices=["Segmentation Blur Model", "Monocular Depth Estimation Model"],
value="Segmentation Blur Model")
blur_intensity = gr.Slider(label="Blur Intensity (sigma)",
minimum=1, maximum=30, step=1, value=15)
run_button = gr.Button("Process Image")
with gr.Column():
output_image = gr.Image(label="Output Image")
mask_output = gr.Image(label="Mask")
run_button.click(
fn=process_image,
inputs=[input_image, method, blur_intensity],
outputs=[output_image, mask_output]
)
demo.launch()