import gradio as gr from transformers import pipeline from PIL import Image, ImageFilter import numpy as np segmentation_model = pipeline("image-segmentation", model="nvidia/segformer-b1-finetuned-cityscapes-1024-1024") depth_estimator = pipeline("depth-estimation", model="Intel/zoedepth-nyu-kitti") def process_image(input_image, method, blur_intensity): """ Process the input image using one of two methods: 1. Segmentation Blur Model: - Uses segmentation to extract a foreground mask. - Applies Gaussian blur to the background. - Composites the final image. 2. Monocular Depth Estimation Model: - Uses depth estimation to generate a depth map. - Normalizes the depth map to be used as a blending mask. - Blends a fully blurred version with the original image. Returns: - output_image: final composited image. - mask_image: the mask used (binary for segmentation, normalized depth for depth-based). """ input_image = input_image.convert("RGB") if method == "Segmentation Blur Model": results = segmentation_model(input_image) foreground_mask = results[-1]["mask"] foreground_mask = foreground_mask.convert("L") binary_mask = foreground_mask.point(lambda p: 255 if p > 128 else 0) blurred_background = input_image.filter(ImageFilter.GaussianBlur(radius=blur_intensity)) output_image = Image.composite(input_image, blurred_background, binary_mask) mask_image = binary_mask elif method == "Monocular Depth Estimation Model": depth_results = depth_estimator(input_image) depth_map = depth_results["depth"] depth_array = np.array(depth_map).astype(np.float32) norm = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min() + 1e-8) normalized_depth = (norm * 255).astype(np.uint8) mask_image = Image.fromarray(normalized_depth) blurred_image = input_image.filter(ImageFilter.GaussianBlur(radius=blur_intensity)) orig_np = np.array(input_image).astype(np.float32) blur_np = np.array(blurred_image).astype(np.float32) alpha = normalized_depth[..., np.newaxis] / 255.0 blended_np = (1 - alpha) * orig_np + alpha * blur_np blended_np = np.clip(blended_np, 0, 255).astype(np.uint8) output_image = Image.fromarray(blended_np) else: output_image = input_image mask_image = input_image.convert("L") return output_image, mask_image with gr.Blocks() as demo: gr.Markdown("## FocusFusion: Segmentation & Depth Blur") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") method = gr.Radio(label="Processing Method", choices=["Segmentation Blur Model", "Monocular Depth Estimation Model"], value="Segmentation Blur Model") blur_intensity = gr.Slider(label="Blur Intensity (sigma)", minimum=1, maximum=30, step=1, value=15) run_button = gr.Button("Process Image") with gr.Column(): output_image = gr.Image(label="Output Image") mask_output = gr.Image(label="Mask") run_button.click( fn=process_image, inputs=[input_image, method, blur_intensity], outputs=[output_image, mask_output] ) demo.launch()