File size: 9,167 Bytes
598d165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import shutil
import subprocess

import torch
import gradio as gr
from fastapi import FastAPI
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from PIL import Image
import tempfile
from decord import VideoReader, cpu
from transformers import TextStreamer
import argparse

import sys
sys.path.insert(0, os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "Evaluation"))
from llava.constants import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle, Conversation
from llava.mm_utils import process_images

from Evaluation.infer_utils import load_video_into_frames
from serve.utils import load_image, image_ext, video_ext
from serve.gradio_utils import Chat, tos_markdown, learn_more_markdown, title_markdown, block_css



def save_image_to_local(image):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
    image = Image.open(image)
    image.save(filename)
    # print(filename)
    return filename


def save_video_to_local(video_path):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
    shutil.copyfile(video_path, filename)
    return filename


def generate(image1, video, textbox_in, first_run, state, state_, images_tensor, num_frames=50):
    # ======= manually clear the conversation
    # state = conv_templates[conv_mode].copy()
    # state_ = conv_templates[conv_mode].copy()
    # # ======= 
    flag = 1
    if not textbox_in:
        if len(state_.messages) > 0:
            textbox_in = state_.messages[-1][1]
            state_.messages.pop(-1)
            flag = 0
        else:
            return "Please enter instruction"
    print("Video", video) # 잘 듀어감
    print("Images_tensor", images_tensor) # None
    print("Textbox_IN", textbox_in) # 잘 듀어감
    print("State", state) # None
    print("State_", state_) # None
    # print(len(state_.messages))

    video = video if video else "none"

    if type(state) is not Conversation:
        state = conv_templates[conv_mode].copy()
        state_ = conv_templates[conv_mode].copy()
        images_tensor = []

    first_run = False if len(state.messages) > 0 else True

    text_en_in = textbox_in.replace("picture", "image")

    image_processor = handler.image_processor
    assert os.path.exists(video)
    if os.path.splitext(video)[-1].lower() in video_ext: # video extension
        video_decode_backend = 'opencv'
    elif os.path.splitext(os.listdir(video)[0]).lower() in image_ext: # frames folder
        video_decode_backend = 'frames'
    else:
        raise ValueError(f'Support video of {video_ext} and frames of {image_ext}, but found {os.path.splitext(video)[-1].lower()}')

    frames = load_video_into_frames(video, video_decode_backend=video_decode_backend, num_frames=num_frames)
    tensor = process_images(frames, image_processor, argparse.Namespace(image_aspect_ratio='pad'))
    # tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
    # print(tensor.shape)
    tensor = tensor.to(handler.model.device, dtype=dtype)
    # images_tensor.append(tensor)
    images_tensor = tensor

    if handler.model.config.mm_use_im_start_end:
        text_en_in = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + text_en_in
    else:
        text_en_in = DEFAULT_IMAGE_TOKEN + '\n' + text_en_in
    text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_)
    state_.messages[-1] = (state_.roles[1], text_en_out)

    text_en_out = text_en_out.split('#')[0]
    textbox_out = text_en_out

    show_images = ""
    if os.path.exists(video):
        filename = save_video_to_local(video)
        show_images += f'<video controls playsinline width="500" style="display: inline-block;"  src="./file={filename}"></video>'
    if flag:
        state.append_message(state.roles[0], textbox_in + "\n" + show_images)
    state.append_message(state.roles[1], textbox_out)

    return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(video) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True))


def regenerate(state, state_):
    state.messages.pop(-1)
    state_.messages.pop(-1)
    if len(state.messages) > 0:
        return state, state_, state.to_gradio_chatbot(), False
    return (state, state_, state.to_gradio_chatbot(), True)


def clear_history(state, state_):
    state = conv_templates[conv_mode].copy()
    state_ = conv_templates[conv_mode].copy()
    return (gr.update(value=None, interactive=True),
            gr.update(value=None, interactive=True), \
            gr.update(value=None, interactive=True), \
            True, state, state_, state.to_gradio_chatbot(), [])


# ==== CHANGE HERE ====
# conv_mode = "llava_v1"
# model_path = 'LanguageBind/Video-LLaVA-7B'
# FIXME!!!

conv_mode = "llava_v0"
model_path = 'SNUMPR/vlm_rlaif_video_llava_7b'
# model_path = '/dataset/yura/vlm-rlaif/pretrained/final_models/Video_LLaVA_VLM_RLAIF_merged'
cache_dir = './cache_dir'
device = 'cuda'
# device = 'cpu'
load_8bit = True
load_4bit = False
dtype = torch.float16
# =============

handler = Chat(model_path, conv_mode=conv_mode, load_8bit=load_8bit, load_4bit=load_8bit, device=device, cache_dir=cache_dir)
# handler.model.to(dtype=dtype)
if not os.path.exists("temp"):
    os.makedirs("temp")

app = FastAPI()


textbox = gr.Textbox(
    show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title='VLM-RLAIF', theme=gr.themes.Default(), css=block_css) as demo:
    gr.Markdown(title_markdown)
    state = gr.State()
    state_ = gr.State()
    first_run = gr.State()
    images_tensor = gr.State()

    image1 = gr.Image(label="Input Image", type="filepath")
    with gr.Row():
        with gr.Column(scale=3):
            video = gr.Video(label="Input Video")

            cur_dir = os.path.dirname(os.path.abspath(__file__))
            gr.Examples(
                examples=[
                    [
                        f"{cur_dir}/examples/sample_demo_1.mp4",
                        "Why is this video funny?",
                    ],
                    [
                        f"{cur_dir}/examples/sample_demo_3.mp4",
                        "Can you identify any safety hazards in this video?"
                    ],
                    [
                        f"{cur_dir}/examples/sample_demo_9.mp4",
                        "Describe the video.",
                    ],
                    [
                        f"{cur_dir}/examples/sample_demo_22.mp4",
                        "Describe the activity in the video.",
                    ],
                ],
                inputs=[video, textbox],
            )

        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="VLM_RLAIF", bubble_full_width=True).style(height=750)
            with gr.Row():
                with gr.Column(scale=8):
                    textbox.render()
                with gr.Column(scale=1, min_width=50):
                    submit_btn = gr.Button(
                        value="Send", variant="primary", interactive=True
                    )
            with gr.Row(elem_id="buttons") as button_row:
                upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=True)
                downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=True)
                flag_btn = gr.Button(value="⚠️  Flag", interactive=True)
                # stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
                regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=True)
                # clear_btn = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=True)

    gr.Markdown(tos_markdown)
    gr.Markdown(learn_more_markdown)

    submit_btn.click(generate, [image1, video, textbox, first_run, state, state_, images_tensor],
                     [state, state_, chatbot, first_run, textbox, images_tensor, image1, video])
    # submit_btn.click(generate, [video, textbox, first_run, state, state_, images_tensor],
                    #  [state, state_, chatbot, first_run, textbox, images_tensor, video])

    regenerate_btn.click(regenerate, [state, state_], [state, state_, chatbot, first_run]).then(
        generate, [image1, video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, image1, video])
        # generate, [video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, video])

    # clear_btn.click(clear_history, [state, state_],
    #                 [image1, video, textbox, first_run, state, state_, chatbot, images_tensor])
                    # [video, textbox, first_run, state, state_, chatbot, images_tensor])

# app = gr.mount_gradio_app(app, demo, path="/")
# demo.launch(share=True)
demo.launch()

# uvicorn videollava.serve.gradio_web_server:app
# python -m  videollava.serve.gradio_web_server