|
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny |
|
from compel import Compel, ReturnedEmbeddingsType |
|
import torch |
|
import os |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
except: |
|
pass |
|
|
|
from PIL import Image |
|
import numpy as np |
|
import gradio as gr |
|
import psutil |
|
|
|
|
|
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) |
|
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() |
|
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() |
|
device = torch.device( |
|
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" |
|
) |
|
torch_device = device |
|
torch_dtype = torch.float16 |
|
|
|
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") |
|
print(f"TORCH_COMPILE: {TORCH_COMPILE}") |
|
print(f"device: {device}") |
|
|
|
if mps_available: |
|
device = torch.device("mps") |
|
torch_device = "cpu" |
|
torch_dtype = torch.float32 |
|
|
|
model_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
|
|
if SAFETY_CHECKER == "True": |
|
pipe = DiffusionPipeline.from_pretrained(model_id) |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None) |
|
|
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(device=torch_device, dtype=torch_dtype).to(device) |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
|
|
|
|
if psutil.virtual_memory().total < 64 * 1024**3: |
|
pipe.enable_attention_slicing() |
|
|
|
if TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) |
|
|
|
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) |
|
|
|
|
|
pipe.load_lora_weights( |
|
"lcm-sd/lcm-sdxl-lora", |
|
weight_name="lcm_sdxl_lora.safetensors", |
|
|
|
use_auth_token=HF_TOKEN, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
compel_proc = Compel( |
|
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], |
|
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], |
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, |
|
requires_pooled=[False, True], |
|
) |
|
|
|
|
|
def predict( |
|
prompt, guidance, steps, seed=1231231, progress=gr.Progress(track_tqdm=True) |
|
): |
|
generator = torch.manual_seed(seed) |
|
prompt_embeds, pooled_prompt_embeds = compel_proc(prompt) |
|
|
|
results = pipe( |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
generator=generator, |
|
num_inference_steps=steps, |
|
guidance_scale=guidance, |
|
width=1024, |
|
height=1024, |
|
|
|
output_type="pil", |
|
) |
|
nsfw_content_detected = ( |
|
results.nsfw_content_detected[0] |
|
if "nsfw_content_detected" in results |
|
else False |
|
) |
|
if nsfw_content_detected: |
|
raise gr.Error("NSFW content detected.") |
|
return results.images[0] |
|
|
|
|
|
css = """ |
|
#container{ |
|
margin: 0 auto; |
|
max-width: 50rem; |
|
} |
|
#intro{ |
|
max-width: 100%; |
|
text-align: center; |
|
margin: 0 auto; |
|
} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="container"): |
|
gr.Markdown( |
|
"""# Ultra-Fast SDXL with Latent Consistency LoRA |
|
In this Space, SDXL is loaded with a latent consistency LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#). |
|
""", |
|
elem_id="intro", |
|
) |
|
with gr.Row(): |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
placeholder="Insert your prompt here:", value="papercut style of a cute monster", scale=5, container=False |
|
) |
|
generate_bt = gr.Button("Generate", scale=1) |
|
|
|
image = gr.Image(type="filepath") |
|
with gr.Accordion("Advanced options", open=False): |
|
guidance = gr.Slider( |
|
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 |
|
) |
|
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) |
|
seed = gr.Slider( |
|
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 |
|
) |
|
with gr.Group(): |
|
gr.Markdown('''## Using it with `diffusers` |
|
```py |
|
from diffusers import DiffusionPipeline, LCMScheduler |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda") |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
pipe.load_lora_weights("lcm-sd/lcm-sdxl-lora") |
|
|
|
results = pipe( |
|
prompt="The spirit of a tamagotchi wandering in the city of Vienna", |
|
num_inference_steps=4, |
|
guidance_scale=0.5, |
|
) |
|
results.images[0] |
|
``` |
|
''') |
|
|
|
inputs = [prompt, guidance, steps, seed] |
|
generate_bt.click(fn=predict, inputs=inputs, outputs=image) |
|
|
|
demo.queue() |
|
demo.launch() |
|
|