object-detection / model.py
mingyang91's picture
remove cv2
f42fa65 verified
raw
history blame
3.4 kB
import torch
import random
from PIL import ImageDraw
import torchvision.transforms as T
# COCO Classes
CLASSES = [
'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
'toothbrush'
]
# Standard PyTorch mean-std Input Image Normalization
transform = T.Compose([
T.Resize(500),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# For Output Bounding Box Post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
# Pre-processing on Image
def image_processing(im, model, transform, confidence=0.9):
# im = Image.open(image_path)
img = transform(im).unsqueeze(0)
outputs = model(img)
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > confidence
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)
return probas[keep], bboxes_scaled
# Helper Functions for Plotting BBoxes
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
width, height = img.size
tl = line_thickness or round(0.002 * (width + height) / 2) + 1 # line/font thickness
color = color or (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
img_draw = ImageDraw.Draw(img)
img_draw.rectangle((c1[0], c1[1], c2[0], c2[1]), outline=color, width=tl)
if label:
tf = max(tl - 1, 1) # font thickness
x1, y1, x2, y2 = img_draw.textbbox(c1, label, stroke_width=tf)
img_draw.rectangle((x1, y1, x2, y2), fill=color)
img_draw.text((x1, y1), label, fill=(255, 255, 255))
# Ploting Bounding Box on img
def add_bboxes(pil_img, prob, bboxes):
for p, coord in zip(prob, bboxes.tolist()):
cl = p.argmax()
text = f'{CLASSES[cl]}: {p[cl]: 0.2f}'
plot_one_box(x=coord, img=pil_img, label=text)
return pil_img
def detect(im, confidence):
# Load model
model = torch.hub.load('facebookresearch/detr', 'detr_resnet101', pretrained=True)
model.eval()
scores, boxes = image_processing(im, model, transform, confidence / 100)
im = add_bboxes(im, scores, boxes)
return im