Spaces:
Runtime error
Runtime error
File size: 8,553 Bytes
ec500f1 095f7cc ec500f1 2fdba78 ec500f1 1d08b5b ec500f1 1d08b5b ec500f1 2fdba78 ec500f1 0821896 ec500f1 93cb0d5 ec500f1 06a2085 ec500f1 2fdba78 ec500f1 2fdba78 ec500f1 06a2085 ec500f1 06a2085 095f7cc 06a2085 ec500f1 06a2085 93cb0d5 0821896 93cb0d5 06a2085 0821896 06a2085 095f7cc ec500f1 06a2085 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Author: Ming Yang
# Date: 2023/01/20
# Description: Traverse the zip file but not decompress it.
# Suppose the zip file contains yolo format annotation files.
# /
# βββ classes.txt
# βββ images
# β βββ 1.jpg
# β βββ 2.jpg
# β βββ ...
# βββ labels
# βββ 1.txt
# βββ 2.txt
# βββ ...
import pathlib
import shutil
from datetime import datetime
from typing import Optional
from zipfile import ZipFile
from PIL import Image
from pycocotools.coco import COCO
yolo_label = {
'class': str,
'class_id': int,
'x_center': float,
'y_center': float,
'width': float,
'height': float
}
yolo_image = {
'image_name': str,
'image': Image,
'labels': list[yolo_label]
}
coco_annotation = {
"id": int,
"image_id": int, # the id of the image that the annotation belongs to
"category_id": int, # the id of the category that the annotation belongs to
# "segmentation": RLE or [polygon],
"area": float,
"bbox": [float, float, float, float], # [x,y,width,height]
"iscrowd": bool, # 0 or 1,
}
coco_category = {
"id": int,
"name": str,
"supercategory": Optional[str],
}
coco_image = {
"id": int,
"width": int,
"height": int,
"file_name": str,
"date_captured": Optional[datetime],
}
coco_dataset = {
"images": list[coco_image], # list of all images in the dataset
"annotations": list[coco_annotation], # list of all annotations in the dataset
"categories": list[coco_category] # list of all categories
}
class YoloImage:
def __init__(self, image_name: str, image: Image, labels: list[yolo_label]):
self.image_name = image_name
self.image = image
self.labels = labels
def __repr__(self):
return f'YoloImage(image_name={self.image_name}, image={self.image}, labels={self.labels})'
def to_coco_image(self, id: int) -> coco_image:
return {
"id": id,
"width": self.image.width,
"height": self.image.height,
"file_name": self.image_name,
}
def to_coco_annotations(self, image_id: int, ann_id_start: int) -> list[coco_annotation]:
ann_id = ann_id_start
annotations: list[coco_annotation] = []
for label in self.labels:
ann_id = ann_id + 1
annotations.append({
"id": ann_id,
"image_id": image_id,
"category_id": label['class_id'],
"area": label['width'] * label['height'] * self.image.width * self.image.height,
"bbox": [
(label['x_center'] - label['width'] / 2) * self.image.width,
(label['y_center'] - label['height'] / 2) * self.image.height,
label['width'] * self.image.width,
label['height'] * self.image.height
],
"iscrowd": False,
})
return annotations
class YoloDataset:
_zip_file: ZipFile
_classes: list[str]
_images: list[str]
_labels: list[str]
def __init__(self, zip_file: ZipFile, classes=None, images=None, labels=None):
if labels is None:
labels = []
if images is None:
images = []
if classes is None:
classes = []
self._zip_file = zip_file
self._classes = classes
self._images = images
self._labels = labels
@staticmethod
def from_zip_file(zip_file: ZipFile) -> 'YoloDataset':
namelist = zip_file.namelist()
namelist = list(filter(lambda x: not (x.endswith('.DS_Store') or x.startswith('__MACOSX')), namelist))
root_name = namelist[0]
if not zip_file.getinfo(root_name).is_dir():
root_name = root_name.split('/')[0] + '/'
namelist = list(filter(lambda x: not zip_file.getinfo(x).is_dir(), namelist))
cls_filename = root_name + 'classes.txt'
if cls_filename in namelist:
classes = zip_file.read(cls_filename).decode('utf-8').split('\n')
else:
classes = []
images = list(filter(lambda x: x.startswith(root_name + 'images'), namelist))
labels = list(filter(lambda x: x.startswith(root_name + 'labels'), namelist))
assert len(images) == len(labels) and len(images) > 0
images.sort()
labels.sort()
for image, label in zip(images, labels):
image_name = image.split('/')[-1]
label_name = label.split('/')[-1]
assert image_name.split('.')[0] == label_name.split('.')[0]
return YoloDataset(zip_file, classes, images, labels)
@staticmethod
def from_path(path: str) -> 'YoloDataset':
zip_file = ZipFile(path, 'r')
return YoloDataset.from_zip_file(zip_file)
def __len__(self):
return len(self._images)
def __getitem__(self, index: int) -> YoloImage:
image_name = self._images[index]
labels = self._zip_file.read(self._labels[index]).decode('utf-8').split('\n')
labels = list(filter(lambda x: len(x) > 0, labels))
labels = list(map(lambda x: x.split(' '), labels))
labels = list(map(lambda x: {
'class': self._classes[int(x[0])] if len(self._classes) > int(x[0]) else 'unknown',
'class_id': int(x[0]),
'x_center': float(x[1]),
'y_center': float(x[2]),
'width': float(x[3]),
'height': float(x[4])
}, labels))
return YoloImage(image_name, Image.open(self._zip_file.open(self._images[index])), labels)
def __iter__(self):
for i in range(len(self)):
yield self[i]
def __deepcopy__(self, memodict=None):
return YoloDataset(self._zip_file, self._classes, self._images, self._labels)
def load_image(self, image_name: str) -> Image:
return Image.open(self._zip_file.open(image_name))
def to_coco(self) -> COCO:
images: list[coco_image] = []
annotations: list[coco_annotation] = []
categories: list[coco_category] = []
ann_id = 0
for i in range(len(self)):
image = self[i]
images.append(image.to_coco_image(i))
annotations.extend(image.to_coco_annotations(i, ann_id))
ann_id = ann_id + len(image.labels)
for i in range(len(self._classes)):
categories.append({
"id": i,
"name": self._classes[i],
"supercategory": None,
})
coco_ds = COCO()
coco_ds.dataset = {
"images": images,
"annotations": annotations,
"categories": categories,
}
coco_ds.createIndex()
return coco_ds
def to_material(self):
return MaterialYoloDataset(self)
@property
def zip_file(self):
return self._zip_file
@property
def classes(self):
return self._classes
class MaterialYoloDataset:
def __init__(self, dataset: YoloDataset):
print(dataset.to_coco().cats)
self._classes = dataset.classes
self._zip_file = dataset.zip_file
first = self._zip_file.namelist()[0]
if self._zip_file.getinfo(first).is_dir():
self._root = first[0:-1]
else:
self._root = first.split('/')[0]
def __enter__(self):
# recursively create dir
dataset_path = pathlib.Path(f'./datasets/')
dataset_path.mkdir(parents=True, exist_ok=True)
self._zip_file.extractall(f'./datasets/')
with open(f'./datasets/{self._root}/data.yaml', 'w+') as f:
f.write(f'path: {dataset_path.absolute()}/{self._root}/\n')
f.write(f'train: images\n')
f.write(f'val: images\n')
f.write(f'\n')
f.write(f'# Classes\n')
f.write(f'names:\n')
for i in range(len(self._classes)):
f.write(f' {i}: {self._classes[i]}\n')
else:
for i in range(0, 2):
f.write(f' {i}: unknown\n')
return self
def __exit__(self, exc_type, exc_val, exc_tb):
shutil.rmtree(f'./datasets/{self._root}')
@property
def yaml(self):
return pathlib.Path(f'./datasets/{self._root}/data.yaml').absolute()
def main():
dataset = YoloDataset.from_path('tests/coco8.zip')
coco = dataset.to_coco()
print(coco)
print(dataset.to_material().yaml)
if __name__ == '__main__':
main()
|