Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
from typing import Dict, List | |
import evaluate | |
import datasets | |
import numpy as np | |
from seametrics.panoptic import PanopticQuality | |
from seametrics.payload import Payload | |
_CITATION = """\ | |
@inproceedings{DBLP:conf/cvpr/KirillovHGRD19, | |
author = {Alexander Kirillov and | |
Kaiming He and | |
Ross B. Girshick and | |
Carsten Rother and | |
Piotr Doll{\'{a}}r}, | |
title = {Panoptic Segmentation}, | |
booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} | |
2019, Long Beach, CA, USA, June 16-20, 2019}, | |
pages = {9404--9413}, | |
publisher = {Computer Vision Foundation / {IEEE}}, | |
year = {2019}, | |
url = {http://openaccess.thecvf.com/content\_CVPR\_2019/html/Kirillov\_Panoptic\_Segmentation\_CVPR\_2019\_paper.html | |
} | |
""" | |
_DESCRIPTION = """\ | |
This evaluation metric calculates Panoptic Quality (PQ) for panoptic segmentation masks. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates PQ-score given predicted and ground truth panoptic segmentation masks. | |
Args: | |
predictions: a 4-d array of shape (batch_size, img_height, img_width, 2). | |
The last dimension should hold the category index at position 0, and | |
the instance ID at position 1. | |
references: a 4-d array of shape (batch_size, img_height, img_width, 2). | |
The last dimension should hold the category index at position 0, and | |
the instance ID at position 1. | |
Returns: | |
A single float number in range [0, 1] that represents the PQ score. | |
1 is perfect panoptic segmentation, 0 is worst possible panoptic segmentation. | |
Examples: | |
>>> import evaluate | |
>>> from seametrics.payload.processor import PayloadProcessor | |
>>> MODEL_FIELD = ["maskformer-27k-100ep"] | |
>>> payload = PayloadProcessor("SAILING_PANOPTIC_DATASET_QA", | |
>>> gt_field="ground_truth_det", | |
>>> models=MODEL_FIELD, | |
>>> sequence_list=["Trip_55_Seq_2", "Trip_197_Seq_1", "Trip_197_Seq_68"], | |
>>> excluded_classes=[""]).payload | |
>>> module = evaluate.load("SEA-AI/PanopticQuality") | |
>>> module.add_payload(payload, model_name=MODEL_FIELD[0]) | |
>>> module.compute() | |
100%|ββββββββββ| 3/3 [00:03<00:00, 1.30s/it] | |
Added data ... | |
Start computing ... | |
Finished! | |
""" | |
class PQMetric(evaluate.Metric): | |
def __init__( | |
self, | |
label2id: Dict[str, int] = None, | |
stuff: List[str] = None, | |
per_class: bool = True, | |
split_sq_rq: bool = True, | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
DEFAULT_LABEL2ID = {'WATER': 0, | |
'SKY': 1, | |
'LAND': 2, | |
'MOTORBOAT': 3, | |
'FAR_AWAY_OBJECT': 4, | |
'SAILING_BOAT_WITH_CLOSED_SAILS': 5, | |
'SHIP': 6, | |
'WATERCRAFT': 7, | |
'SPHERICAL_BUOY': 8, | |
'CONSTRUCTION': 9, | |
'FLOTSAM': 10, | |
'SAILING_BOAT_WITH_OPEN_SAILS': 11, | |
'CONTAINER': 12, | |
'PILLAR_BUOY': 13, | |
'AERIAL_ANIMAL': 14, | |
'HUMAN_IN_WATER': 15, | |
'OWN_BOAT': 16, | |
'WOODEN_LOG': 17, | |
'MARITIME_ANIMAL': 18} | |
DEFAULT_STUFF = ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"] | |
self.label2id = label2id if label2id is not None else DEFAULT_LABEL2ID | |
self.stuff = stuff if stuff is not None else DEFAULT_STUFF | |
self.per_class = per_class | |
self.split_sq_rq = split_sq_rq | |
self.pq_metric = PanopticQuality( | |
things=set([self.label2id[label] for label in self.label2id.keys() if label not in self.stuff]), | |
stuffs=set([self.label2id[label] for label in self.label2id.keys() if label in self.stuff]), | |
return_per_class=per_class, | |
return_sq_and_rq=split_sq_rq | |
) | |
def _info(self): | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Sequence( | |
datasets.Sequence( | |
datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
) | |
), | |
), | |
"references": datasets.Sequence( # batch | |
datasets.Sequence( # img height | |
datasets.Sequence( # img width | |
datasets.Sequence(datasets.Value("float")) # 2 | |
) | |
), | |
), | |
} | |
), | |
# Additional links to the codebase or references | |
codebase_urls=[ | |
"https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html" | |
], | |
) | |
def add(self, *, prediction, reference, **kwargs): | |
"""Adds a batch of predictions and references to the metric""" | |
# in case the inputs are lists, convert them to numpy arrays | |
self.pq_metric.update(prediction, reference) | |
# does not impact the metric, but is required for the interface x_x | |
super(evaluate.Metric, self).add( | |
prediction=self._postprocess(prediction), | |
references=self._postprocess(reference), | |
**kwargs | |
) | |
def _compute(self, *, predictions, references, **kwargs): | |
"""Called within the evaluate.Metric.compute() method""" | |
tp = self.pq_metric.metric.true_positives.clone() | |
fp = self.pq_metric.metric.false_positives.clone() | |
fn = self.pq_metric.metric.false_negatives.clone() | |
iou = self.pq_metric.metric.iou_sum.clone() | |
id2label = {id: label for label, id in self.label2id.items()} | |
things_stuffs = sorted(self.pq_metric.things) + sorted(self.pq_metric.stuffs) | |
# compute scores | |
result = self.pq_metric.compute() # shape : (n_classes (sorted things + sorted stuffs), scores (pq, sq, rq)) | |
result_dict = dict() | |
if self.per_class: | |
if not self.split_sq_rq: | |
result = result.T | |
result_dict["scores"] = {id2label[numeric_label]: result[i].tolist() \ | |
for i, numeric_label in enumerate(things_stuffs)} | |
result_dict["scores"].update({"overall": result.mean(axis=0).tolist()}) | |
result_dict["numbers"] = {id2label[numeric_label]: [tp[i].item(), fp[i].item(), fn[i].item(), iou[i].item()] \ | |
for i, numeric_label in enumerate(things_stuffs)} | |
result_dict["numbers"].update({"overall": [tp.sum().item(), fp.sum().item(), fn.sum().item(), iou.sum().item()]}) | |
else: | |
result_dict["scores"] = {"overall": result.tolist() if self.split_sq_rq else [result.tolist()]} | |
result_dict["numbers"] = {"overall": [tp.sum().item(), fp.sum().item(), fn.sum().item(), iou.sum().item()]} | |
return result_dict | |
def add_payload(self, payload: Payload, model_name: str = None): | |
"""Converts the payload to the format expected by the metric""" | |
# import only if needed since fiftyone is not a direct dependency | |
from seametrics.panoptic.utils import payload_to_seg_metric | |
predictions, references, label2id = payload_to_seg_metric(payload, model_name, self.label2id) | |
self.label2id = label2id | |
self.add(prediction=predictions, reference=references) | |
def _postprocess(self, np_array): | |
"""Converts the numpy arrays to lists for type checking""" | |
# add fake data to avoid out of memory problem | |
# only reuqired for interface, not used by metric anyway | |
return np.zeros((1,1,1,1)).tolist() | |