Spaces:
Sleeping
Sleeping
File size: 3,458 Bytes
1c14bfe 9d444ef 1c14bfe 9d444ef 1c14bfe 9d444ef 1c14bfe 9d444ef c41e19f 9d444ef c41e19f 9d444ef c41e19f 9d444ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
title: PanopticQuality
tags:
- evaluate
- metric
description: >-
PanopticQuality score
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
emoji: π΅οΈ
---
# SEA-AI/PanopticQuality
This hugging face metric uses `seametrics.segmentation.PanopticQuality` under the hood to compute a panoptic quality score. It is a wrapper class for the torchmetrics class [`torchmetrics.detection.PanopticQuality`](https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html).
## Getting Started
To get started with PanopticQuality, make sure you have the necessary dependencies installed. This metric relies on the `evaluate`, `seametrics` and `seametrics[segmentation]`libraries for metric calculation and integration with FiftyOne datasets.
### Basic Usage
```python
>>> import evaluate
>>> from seametrics.fo_utils.utils import fo_to_payload
>>> MODEL_FIELD = ["maskformer-27k-100ep"]
>>> payload = fo_to_payload("SAILING_PANOPTIC_DATASET_QA",
>>> gt_field="ground_truth_det",
>>> models=MODEL_FIELD,
>>> sequence_list=["Trip_55_Seq_2", "Trip_197_Seq_1", "Trip_197_Seq_68"],
>>> excluded_classes=[""])
>>> module = evaluate.load("SEA-AI/PanopticQuality")
>>> module.add_payload(payload, model_name=MODEL_FIELD[0])
>>> module.compute()
100%|ββββββββββ| 3/3 [00:03<00:00, 1.30s/it]
Added data ...
Start computing ...
Finished!
tensor(0.2082, dtype=torch.float64)
```
## Metric Settings
The metric takes two optional input parameters: __label2id__ and __stuff__.
* `label2id: Dict[str, int]`: this dictionary is used to map string labels to an integer representation.
if not provided a default setting will be used:
`{'WATER': 0,
'SKY': 1,
'LAND': 2,
'MOTORBOAT': 3,
'FAR_AWAY_OBJECT': 4,
'SAILING_BOAT_WITH_CLOSED_SAILS': 5,
'SHIP': 6,
'WATERCRAFT': 7,
'SPHERICAL_BUOY': 8,
'CONSTRUCTION': 9,
'FLOTSAM': 10,
'SAILING_BOAT_WITH_OPEN_SAILS': 11,
'CONTAINER': 12,
'PILLAR_BUOY': 13}
`
* `stuff: List[str]`: this list holds all string labels that belong to stuff.
if not provided a default setting will be used:
`
["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]`
## Output Values
A single float number between 0 and 1 is returned, which represents the PQ score. The bigger the number the better the PQ score, and vice versa.
## Further References
- **seametrics Library**: Explore the [seametrics GitHub repository](https://github.com/SEA-AI/seametrics/tree/main) for more details on the underlying library.
- **Torchmetrics**: https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html
- **Understanding Metrics**: The Panoptic Segmentation task, as well as Panoptic Quality as the evaluation metric, were introduced [in this paper](https://arxiv.org/pdf/1801.00868.pdf).
## Contribution
Your contributions are welcome! If you'd like to improve SEA-AI/PanopticQuality or add new features, please feel free to fork the repository, make your changes, and submit a pull request. |