File size: 9,394 Bytes
9d444ef
 
 
 
 
 
 
 
 
 
 
 
 
 
9add542
9d444ef
 
 
 
 
b23c6fe
5b34f1e
9d444ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b34f1e
9d444ef
5b34f1e
9d444ef
 
 
5b34f1e
9d444ef
 
 
 
 
 
 
 
 
 
 
 
 
 
9add542
 
de1f95e
 
9d444ef
 
 
73dd662
9d444ef
 
 
 
 
 
 
 
 
 
 
 
 
73dd662
 
 
 
 
 
 
9d444ef
44bdae7
9d444ef
 
de1f95e
 
9d444ef
 
de1f95e
 
 
9d444ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de1f95e
 
 
 
 
0bb094e
de1f95e
 
 
 
 
2b772af
9d444ef
de1f95e
2b772af
 
 
 
4f17999
2b772af
 
4f17999
de1f95e
4f17999
 
de1f95e
 
 
5b34f1e
9d444ef
 
193d419
9d444ef
 
 
 
 
 
 
44bdae7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
from typing import Dict, List

import evaluate
import datasets
import numpy as np

from seametrics.panoptic import PanopticQuality
from seametrics.payload import Payload

_CITATION = """\
@inproceedings{DBLP:conf/cvpr/KirillovHGRD19,
  author       = {Alexander Kirillov and
                  Kaiming He and
                  Ross B. Girshick and
                  Carsten Rother and
                  Piotr Doll{\'{a}}r},
  title        = {Panoptic Segmentation},
  booktitle    = {{IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR}
                  2019, Long Beach, CA, USA, June 16-20, 2019},
  pages        = {9404--9413},
  publisher    = {Computer Vision Foundation / {IEEE}},
  year         = {2019},
  url          = {http://openaccess.thecvf.com/content\_CVPR\_2019/html/Kirillov\_Panoptic\_Segmentation\_CVPR\_2019\_paper.html
}
"""

_DESCRIPTION = """\
This evaluation metric calculates Panoptic Quality (PQ) for panoptic segmentation masks.
"""


_KWARGS_DESCRIPTION = """
Calculates PQ-score given predicted and ground truth panoptic segmentation masks.
Args:
    predictions: a 4-d array of shape (batch_size, img_height, img_width, 2).
        The last dimension should hold the category index at position 0, and
        the instance ID at position 1.
    references:  a 4-d array of shape (batch_size, img_height, img_width, 2).
        The last dimension should hold the category index at position 0, and
        the instance ID at position 1.
Returns:
    A single float number in range [0, 1] that represents the PQ score.
    1 is perfect panoptic segmentation, 0 is worst possible panoptic segmentation.
Examples:
    >>> import evaluate
    >>> from seametrics.payload.processor import PayloadProcessor
    >>> MODEL_FIELD = ["maskformer-27k-100ep"]
    >>> payload = PayloadProcessor("SAILING_PANOPTIC_DATASET_QA",
    >>>                         gt_field="ground_truth_det",
    >>>                         models=MODEL_FIELD,
    >>>                         sequence_list=["Trip_55_Seq_2", "Trip_197_Seq_1", "Trip_197_Seq_68"],
    >>>                         excluded_classes=[""]).payload
    >>> module = evaluate.load("SEA-AI/PanopticQuality")
    >>> module.add_payload(payload, model_name=MODEL_FIELD[0])
    >>> module.compute()
    100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:03<00:00,  1.30s/it]
    Added data ...
    Start computing ...
    Finished!
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class PQMetric(evaluate.Metric):
    def __init__(
        self,
        label2id: Dict[str, int] = None,
        stuff: List[str] = None,
        per_class: bool = True,
        split_sq_rq: bool = True,
        **kwargs
    ):
        super().__init__(**kwargs)
        
        DEFAULT_LABEL2ID = {'WATER': 0,
                            'SKY': 1,
                            'LAND': 2,
                            'MOTORBOAT': 3,
                            'FAR_AWAY_OBJECT': 4,
                            'SAILING_BOAT_WITH_CLOSED_SAILS': 5,
                            'SHIP': 6,
                            'WATERCRAFT': 7,
                            'SPHERICAL_BUOY': 8,
                            'CONSTRUCTION': 9,
                            'FLOTSAM': 10,
                            'SAILING_BOAT_WITH_OPEN_SAILS': 11,
                            'CONTAINER': 12,
                            'PILLAR_BUOY': 13,
                            'AERIAL_ANIMAL': 14,
                            'HUMAN_IN_WATER': 15,
                            'OWN_BOAT': 16,
                            'WOODEN_LOG': 17,
                            'MARITIME_ANIMAL': 18}
        
        DEFAULT_STUFF = ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]

        self.label2id = label2id if label2id is not None else DEFAULT_LABEL2ID
        self.stuff =  stuff if stuff is not None else DEFAULT_STUFF
        self.per_class = per_class
        self.split_sq_rq = split_sq_rq
        self.pq_metric = PanopticQuality(
            things=set([self.label2id[label] for label in self.label2id.keys() if label not in self.stuff]), 
            stuffs=set([self.label2id[label] for label in self.label2id.keys() if label in self.stuff]),
            return_per_class=per_class,
            return_sq_and_rq=split_sq_rq
        )

    def _info(self):
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(
                                        datasets.Sequence(
                                            datasets.Sequence(
                                                datasets.Sequence(datasets.Value("float"))
                                            )
                                         ),
                                    ),
                    "references": datasets.Sequence( # batch
                                        datasets.Sequence( # img height
                                            datasets.Sequence( # img width
                                                datasets.Sequence(datasets.Value("float")) # 2
                                            )
                                         ),
                                    ),
                }
            ),
            # Additional links to the codebase or references
            codebase_urls=[
                "https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html"
            ],
        )

    def add(self, *, prediction, reference, **kwargs):
        """Adds a batch of predictions and references to the metric"""
        # in case the inputs are lists, convert them to numpy arrays

        self.pq_metric.update(prediction, reference)

        # does not impact the metric, but is required for the interface x_x
        super(evaluate.Metric, self).add(
            prediction=self._postprocess(prediction),
            references=self._postprocess(reference),
            **kwargs
        )

    def _compute(self, *, predictions, references, **kwargs):
        """Called within the evaluate.Metric.compute() method"""
        tp = self.pq_metric.metric.true_positives.clone()
        fp = self.pq_metric.metric.false_positives.clone()
        fn = self.pq_metric.metric.false_negatives.clone()
        iou = self.pq_metric.metric.iou_sum.clone()

        id2label = {id: label for label, id in self.label2id.items()}
        things_stuffs = sorted(self.pq_metric.things) + sorted(self.pq_metric.stuffs)

        # compute scores
        result = self.pq_metric.compute() # shape : (n_classes (sorted things + sorted stuffs), scores (pq, sq, rq))

        result_dict = dict()

        if self.per_class:
            if not self.split_sq_rq:
                result = result.T
            result_dict["scores"] = {id2label[numeric_label]: result[i].tolist() \
                                     for i, numeric_label in enumerate(things_stuffs)}
            result_dict["scores"].update({"ALL": result.mean(axis=0).tolist()})
            result_dict["numbers"] =  {id2label[numeric_label]: [tp[i].item(), fp[i].item(), fn[i].item(), iou[i].item()] \
                                       for i, numeric_label in enumerate(things_stuffs)}
            result_dict["numbers"].update({"ALL": [tp.sum().item(), fp.sum().item(), fn.sum().item(), iou.sum().item()]})
        else:
            result_dict["scores"] = {"ALL": result.tolist() if self.split_sq_rq else [result.tolist()]}
            result_dict["numbers"] = {"ALL": [tp.sum().item(), fp.sum().item(), fn.sum().item(), iou.sum().item()]}
        
        return result_dict

    def add_payload(self, payload: Payload, model_name: str = None):
        """Converts the payload to the format expected by the metric"""
        # import only if needed since fiftyone is not a direct dependency
        from seametrics.panoptic.utils import payload_to_seg_metric

        predictions, references, label2id = payload_to_seg_metric(payload, model_name, self.label2id)
        self.label2id = label2id
        self.add(prediction=predictions, reference=references)

    def _postprocess(self, np_array):
        """Converts the numpy arrays to lists for type checking"""
        # add fake data to avoid out of memory problem
        # only reuqired for interface, not used by metric anyway
        return np.zeros((1,1,1,1)).tolist()