from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
class OmographModel: | |
def __init__(self, allow_cuda=True) -> None: | |
self.device = torch.device('cuda' if torch.cuda.is_available() and allow_cuda else 'cpu') | |
def load(self, path): | |
self.nli_model = AutoModelForSequenceClassification.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device) | |
self.tokenizer = AutoTokenizer.from_pretrained(path) | |
def classify(self, text, hypotheses): | |
encodings = self.tokenizer.batch_encode_plus([(text, hyp) for hyp in hypotheses], return_tensors='pt', padding=True) | |
input_ids = encodings['input_ids'].to(self.device) | |
with torch.no_grad(): | |
logits = self.nli_model(input_ids)[0] | |
entail_contradiction_logits = logits[:,[0,2]] | |
probs = entail_contradiction_logits.softmax(dim=1) | |
prob_label_is_true = [float(p[1]) for p in probs] | |
return hypotheses[prob_label_is_true.index(max(prob_label_is_true))] |