Rzhishchev commited on
Commit
5a4923b
·
1 Parent(s): d6defb5

Upload toxic.py

Browse files
Files changed (1) hide show
  1. toxic.py +29 -0
toxic.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+
5
+ model_checkpoint = 'cointegrated/rubert-tiny-toxicity'
6
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
8
+ if torch.cuda.is_available():
9
+ model.cuda()
10
+
11
+ def text2toxicity(text, aggregate=True):
12
+ """ Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)"""
13
+ with torch.no_grad():
14
+ inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device)
15
+ proba = torch.sigmoid(model(**inputs).logits).cpu().numpy()
16
+ if isinstance(text, str):
17
+ proba = proba[0]
18
+ if aggregate:
19
+ return 1 - proba.T[0] * (1 - proba.T[-1])
20
+ return proba
21
+
22
+ st.title("Toxicity Detector")
23
+
24
+ user_input = st.text_area("Enter text to check for toxicity:", "Капец ты гнида")
25
+ if st.button("Analyze"):
26
+ toxicity_score = text2toxicity(user_input, True)
27
+ st.write(f"Toxicity Score: {toxicity_score:.4f}")
28
+ if toxicity_score > 0.5:
29
+ st.write("Warning: The text seems to be toxic!")