Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- app.py +4 -21
- custom_pipeline.py +0 -192
- requirements.txt +9 -9
app.py
CHANGED
@@ -7,7 +7,6 @@ import time
|
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
9 |
from custom_pipeline import FluxWithCFGPipeline
|
10 |
-
from huggingface_hub import login
|
11 |
|
12 |
torch.backends.cuda.matmul.allow_tf32 = True
|
13 |
|
@@ -19,33 +18,17 @@ DEFAULT_HEIGHT = 1024
|
|
19 |
DEFAULT_INFERENCE_STEPS = 1
|
20 |
|
21 |
# Device and model setup
|
22 |
-
dtype = torch.
|
23 |
pipe = FluxWithCFGPipeline.from_pretrained(
|
24 |
-
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
25 |
)
|
26 |
-
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype
|
27 |
pipe.to("cuda")
|
28 |
pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
29 |
pipe.set_adapters(["better"], adapter_weights=[1.0])
|
30 |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
31 |
pipe.unload_lora_weights()
|
32 |
|
33 |
-
# Enable xformers
|
34 |
-
pipe.enable_xformers_memory_efficient_attention()
|
35 |
-
|
36 |
-
# Compile the model (Optional, needs further testing for stability)
|
37 |
-
# pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
38 |
-
|
39 |
-
# Capture CUDA Graph (Warm-up)
|
40 |
-
static_inputs = {
|
41 |
-
"prompt": "warmup",
|
42 |
-
"width": DEFAULT_WIDTH,
|
43 |
-
"height": DEFAULT_HEIGHT,
|
44 |
-
"num_inference_steps": DEFAULT_INFERENCE_STEPS,
|
45 |
-
"generator": torch.Generator().manual_seed(0),
|
46 |
-
}
|
47 |
-
|
48 |
-
pipe.capture_cuda_graph(**static_inputs)
|
49 |
torch.cuda.empty_cache()
|
50 |
|
51 |
# Inference function
|
@@ -180,4 +163,4 @@ with gr.Blocks() as demo:
|
|
180 |
)
|
181 |
|
182 |
# Launch the app
|
183 |
-
demo.launch()
|
|
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
9 |
from custom_pipeline import FluxWithCFGPipeline
|
|
|
10 |
|
11 |
torch.backends.cuda.matmul.allow_tf32 = True
|
12 |
|
|
|
18 |
DEFAULT_INFERENCE_STEPS = 1
|
19 |
|
20 |
# Device and model setup
|
21 |
+
dtype = torch.float16
|
22 |
pipe = FluxWithCFGPipeline.from_pretrained(
|
23 |
+
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
24 |
)
|
25 |
+
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
26 |
pipe.to("cuda")
|
27 |
pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
28 |
pipe.set_adapters(["better"], adapter_weights=[1.0])
|
29 |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
30 |
pipe.unload_lora_weights()
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
torch.cuda.empty_cache()
|
33 |
|
34 |
# Inference function
|
|
|
163 |
)
|
164 |
|
165 |
# Launch the app
|
166 |
+
demo.launch()
|
custom_pipeline.py
CHANGED
@@ -3,7 +3,6 @@ import numpy as np
|
|
3 |
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
|
4 |
from typing import Any, Dict, List, Optional, Union
|
5 |
from PIL import Image
|
6 |
-
from collections import OrderedDict
|
7 |
|
8 |
# Constants for shift calculation
|
9 |
BASE_SEQ_LEN = 256
|
@@ -48,169 +47,6 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
48 |
Extends the FluxPipeline to yield intermediate images during the denoising process
|
49 |
with progressively increasing resolution for faster generation.
|
50 |
"""
|
51 |
-
def __init__(
|
52 |
-
self,
|
53 |
-
vae,
|
54 |
-
text_encoder,
|
55 |
-
text_encoder_2,
|
56 |
-
tokenizer,
|
57 |
-
tokenizer_2,
|
58 |
-
transformer,
|
59 |
-
scheduler: FlowMatchEulerDiscreteScheduler,
|
60 |
-
):
|
61 |
-
super().__init__(vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, transformer, scheduler)
|
62 |
-
self.cuda_graphs = {}
|
63 |
-
|
64 |
-
def capture_cuda_graph(
|
65 |
-
self,
|
66 |
-
prompt: Union[str, List[str]] = None,
|
67 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
68 |
-
height: Optional[int] = None,
|
69 |
-
width: Optional[int] = None,
|
70 |
-
num_inference_steps: int = 4,
|
71 |
-
guidance_scale: float = 3.5,
|
72 |
-
num_images_per_prompt: Optional[int] = 1,
|
73 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
74 |
-
latents: Optional[torch.FloatTensor] = None,
|
75 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
76 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
77 |
-
output_type: Optional[str] = "pil",
|
78 |
-
return_dict: bool = True,
|
79 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
80 |
-
max_sequence_length: int = 300,
|
81 |
-
**kwargs,
|
82 |
-
):
|
83 |
-
"""
|
84 |
-
Captures a static CUDA Graph for the generation process given static inputs.
|
85 |
-
"""
|
86 |
-
# Use a static size for all inputs
|
87 |
-
static_height = height
|
88 |
-
static_width = width
|
89 |
-
|
90 |
-
# 1. Check inputs
|
91 |
-
self.check_inputs(
|
92 |
-
prompt,
|
93 |
-
prompt_2,
|
94 |
-
static_height,
|
95 |
-
static_width,
|
96 |
-
prompt_embeds=prompt_embeds,
|
97 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
98 |
-
max_sequence_length=max_sequence_length,
|
99 |
-
)
|
100 |
-
|
101 |
-
self._guidance_scale = guidance_scale
|
102 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
103 |
-
self._interrupt = False
|
104 |
-
|
105 |
-
# 2. Define call parameters
|
106 |
-
batch_size = 1
|
107 |
-
device = self._execution_device
|
108 |
-
|
109 |
-
# 3. Encode prompt (with static inputs)
|
110 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
111 |
-
|
112 |
-
# Use a static prompt for capture
|
113 |
-
static_prompt = "static prompt" if isinstance(prompt, str) else ["static prompt"]
|
114 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
115 |
-
prompt=static_prompt,
|
116 |
-
prompt_2=prompt_2,
|
117 |
-
prompt_embeds=None,
|
118 |
-
pooled_prompt_embeds=None,
|
119 |
-
device=device,
|
120 |
-
num_images_per_prompt=num_images_per_prompt,
|
121 |
-
max_sequence_length=max_sequence_length,
|
122 |
-
lora_scale=lora_scale,
|
123 |
-
)
|
124 |
-
|
125 |
-
# 4. Prepare latent variables (with static inputs)
|
126 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
127 |
-
latents, latent_image_ids = self.prepare_latents(
|
128 |
-
batch_size * num_images_per_prompt,
|
129 |
-
num_channels_latents,
|
130 |
-
static_height,
|
131 |
-
static_width,
|
132 |
-
prompt_embeds.dtype,
|
133 |
-
device,
|
134 |
-
generator,
|
135 |
-
None,
|
136 |
-
)
|
137 |
-
|
138 |
-
# 5. Prepare timesteps (with static inputs)
|
139 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
140 |
-
image_seq_len = latents.shape[1]
|
141 |
-
mu = calculate_timestep_shift(image_seq_len)
|
142 |
-
timesteps, num_inference_steps = prepare_timesteps(
|
143 |
-
self.scheduler,
|
144 |
-
num_inference_steps,
|
145 |
-
device,
|
146 |
-
None,
|
147 |
-
sigmas,
|
148 |
-
mu=mu,
|
149 |
-
)
|
150 |
-
self._num_timesteps = len(timesteps)
|
151 |
-
|
152 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
153 |
-
|
154 |
-
# Capture the graph
|
155 |
-
torch.cuda.synchronize()
|
156 |
-
stream = torch.cuda.Stream()
|
157 |
-
stream.wait_stream(torch.cuda.current_stream())
|
158 |
-
with torch.cuda.stream(stream):
|
159 |
-
for i, t in enumerate(timesteps):
|
160 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
161 |
-
noise_pred = self.transformer(
|
162 |
-
hidden_states=latents,
|
163 |
-
timestep=timestep / 1000,
|
164 |
-
guidance=guidance,
|
165 |
-
pooled_projections=pooled_prompt_embeds,
|
166 |
-
encoder_hidden_states=prompt_embeds,
|
167 |
-
txt_ids=text_ids,
|
168 |
-
img_ids=latent_image_ids,
|
169 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
170 |
-
return_dict=False,
|
171 |
-
)[0]
|
172 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
173 |
-
|
174 |
-
torch.cuda.current_stream().wait_stream(stream)
|
175 |
-
torch.cuda.synchronize()
|
176 |
-
|
177 |
-
# Capture the CUDA graph
|
178 |
-
graph = torch.cuda.CUDAGraph()
|
179 |
-
with torch.cuda.graph(graph, stream=stream):
|
180 |
-
# Create static inputs
|
181 |
-
static_inputs = OrderedDict()
|
182 |
-
static_inputs["hidden_states"] = latents.clone()
|
183 |
-
static_inputs["timestep"] = timesteps[0].expand(latents.shape[0]).to(latents.dtype)
|
184 |
-
static_inputs["guidance"] = guidance.clone() if guidance is not None else None
|
185 |
-
static_inputs["pooled_projections"] = pooled_prompt_embeds.clone()
|
186 |
-
static_inputs["encoder_hidden_states"] = prompt_embeds.clone()
|
187 |
-
static_inputs["txt_ids"] = text_ids
|
188 |
-
static_inputs["img_ids"] = latent_image_ids.clone()
|
189 |
-
static_inputs["joint_attention_kwargs"] = self.joint_attention_kwargs
|
190 |
-
|
191 |
-
# Run the static graph
|
192 |
-
for i, t in enumerate(timesteps):
|
193 |
-
timestep = static_inputs["timestep"].clone()
|
194 |
-
noise_pred = self.transformer(
|
195 |
-
hidden_states=static_inputs["hidden_states"],
|
196 |
-
timestep=timestep / 1000,
|
197 |
-
guidance=static_inputs["guidance"],
|
198 |
-
pooled_projections=static_inputs["pooled_projections"],
|
199 |
-
encoder_hidden_states=static_inputs["encoder_hidden_states"],
|
200 |
-
txt_ids=static_inputs["txt_ids"],
|
201 |
-
img_ids=static_inputs["img_ids"],
|
202 |
-
joint_attention_kwargs=static_inputs["joint_attention_kwargs"],
|
203 |
-
return_dict=False,
|
204 |
-
)[0]
|
205 |
-
static_inputs["hidden_states"] = self.scheduler.step(noise_pred, t, static_inputs["hidden_states"], return_dict=False)[0]
|
206 |
-
|
207 |
-
# Decode the latents after the loop
|
208 |
-
final_latents = static_inputs["hidden_states"]
|
209 |
-
final_image = self._decode_latents_to_image(final_latents, static_height, static_width, output_type)
|
210 |
-
|
211 |
-
# Store the graph and static inputs in the dictionary
|
212 |
-
self.cuda_graphs[(static_height, static_width, num_inference_steps)] = (graph, static_inputs, final_image)
|
213 |
-
|
214 |
@torch.inference_mode()
|
215 |
def generate_images(
|
216 |
self,
|
@@ -235,34 +71,6 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
235 |
height = height or self.default_sample_size * self.vae_scale_factor
|
236 |
width = width or self.default_sample_size * self.vae_scale_factor
|
237 |
|
238 |
-
# 0. Check if a CUDA graph can be used
|
239 |
-
if (height, width, num_inference_steps) in self.cuda_graphs:
|
240 |
-
graph, static_inputs, final_image = self.cuda_graphs[(height, width, num_inference_steps)]
|
241 |
-
|
242 |
-
# Update dynamic inputs (like prompt) in static_inputs
|
243 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
244 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
245 |
-
prompt=prompt,
|
246 |
-
prompt_2=prompt_2,
|
247 |
-
prompt_embeds=prompt_embeds,
|
248 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
249 |
-
device=self._execution_device,
|
250 |
-
num_images_per_prompt=num_images_per_prompt,
|
251 |
-
max_sequence_length=max_sequence_length,
|
252 |
-
lora_scale=lora_scale,
|
253 |
-
)
|
254 |
-
|
255 |
-
# Update only the dynamic parts of static_inputs
|
256 |
-
static_inputs["pooled_projections"].copy_(pooled_prompt_embeds)
|
257 |
-
static_inputs["encoder_hidden_states"].copy_(prompt_embeds)
|
258 |
-
static_inputs["txt_ids"] = text_ids
|
259 |
-
|
260 |
-
# Replay the graph
|
261 |
-
graph.replay()
|
262 |
-
torch.cuda.empty_cache()
|
263 |
-
|
264 |
-
return final_image
|
265 |
-
|
266 |
# 1. Check inputs
|
267 |
self.check_inputs(
|
268 |
prompt,
|
|
|
3 |
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
|
4 |
from typing import Any, Dict, List, Optional, Union
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
# Constants for shift calculation
|
8 |
BASE_SEQ_LEN = 256
|
|
|
47 |
Extends the FluxPipeline to yield intermediate images during the denoising process
|
48 |
with progressively increasing resolution for faster generation.
|
49 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@torch.inference_mode()
|
51 |
def generate_images(
|
52 |
self,
|
|
|
71 |
height = height or self.default_sample_size * self.vae_scale_factor
|
72 |
width = width or self.default_sample_size * self.vae_scale_factor
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# 1. Check inputs
|
75 |
self.check_inputs(
|
76 |
prompt,
|
requirements.txt
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
accelerate
|
2 |
-
git+https://github.com/huggingface/diffusers.git@main
|
3 |
-
torch>=2.0
|
4 |
-
gradio==5.8.0
|
5 |
-
transformers
|
6 |
-
xformers
|
7 |
-
sentencepiece
|
8 |
-
peft
|
9 |
-
numpy
|
10 |
pillow
|
|
|
1 |
+
accelerate
|
2 |
+
git+https://github.com/huggingface/diffusers.git@main
|
3 |
+
torch>=2.0
|
4 |
+
gradio==5.8.0
|
5 |
+
transformers
|
6 |
+
xformers
|
7 |
+
sentencepiece
|
8 |
+
peft
|
9 |
+
numpy
|
10 |
pillow
|