Spaces:
Sleeping
Sleeping
import itertools | |
from typing import Any, Callable, Dict, Optional, Union, List | |
import spacy | |
import torch | |
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( | |
EXAMPLE_DOC_STRING, | |
) | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_attend_and_excite import ( | |
AttentionStore, | |
AttendExciteCrossAttnProcessor, | |
) | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
logging, | |
replace_example_docstring, | |
) | |
from transformers import CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor | |
logger = logging.get_logger(__name__) | |
class SynGenDiffusionPipeline(StableDiffusionPipeline): | |
def __init__(self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPFeatureExtractor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__(vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, | |
requires_safety_checker) | |
self.parser = spacy.load("en_core_web_trf") | |
self.subtrees_indices = None | |
self.doc = None | |
# self.doc = ""#self.parser(prompt) | |
def _aggregate_and_get_attention_maps_per_token(self): | |
attention_maps = self.attention_store.aggregate_attention( | |
from_where=("up", "down", "mid"), | |
) | |
attention_maps_list = _get_attention_maps_list( | |
attention_maps=attention_maps | |
) | |
return attention_maps_list | |
def _update_latent( | |
latents: torch.Tensor, loss: torch.Tensor, step_size: float | |
) -> torch.Tensor: | |
"""Update the latent according to the computed loss.""" | |
grad_cond = torch.autograd.grad( | |
loss.requires_grad_(True), [latents], retain_graph=True | |
)[0] | |
latents = latents - step_size * grad_cond | |
return latents | |
def register_attention_control(self): | |
attn_procs = {} | |
cross_att_count = 0 | |
for name in self.unet.attn_processors.keys(): | |
if name.startswith("mid_block"): | |
place_in_unet = "mid" | |
elif name.startswith("up_blocks"): | |
place_in_unet = "up" | |
elif name.startswith("down_blocks"): | |
place_in_unet = "down" | |
else: | |
continue | |
cross_att_count += 1 | |
attn_procs[name] = AttendExciteCrossAttnProcessor( | |
attnstore=self.attention_store, place_in_unet=place_in_unet | |
) | |
self.unet.set_attn_processor(attn_procs) | |
self.attention_store.num_att_layers = cross_att_count | |
# Based on StableDiffusionPipeline.__call__ . New code is annotated with NEW. | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
syngen_step_size: float = 20.0, | |
parsed_prompt: str=None | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
syngen_step_size (`float`, *optional*, default to 20.0): | |
Controls the step size of each SynGen update. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
if parsed_prompt: | |
self.doc = parsed_prompt | |
else: | |
self.doc = self.parser(prompt) | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# NEW - stores the attention calculated in the unet | |
self.attention_store = AttentionStore() | |
self.register_attention_control() | |
# NEW | |
text_embeddings = ( | |
prompt_embeds[batch_size * num_images_per_prompt:] if do_classifier_free_guidance else prompt_embeds | |
) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# NEW | |
if i < 25: | |
latents = self._syngen_step( | |
latents, | |
text_embeddings, | |
t, | |
i, | |
syngen_step_size, | |
cross_attention_kwargs, | |
prompt, | |
max_iter_to_alter=25, | |
) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs | |
).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if output_type == "latent": | |
image = latents | |
has_nsfw_concept = None | |
elif output_type == "pil": | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
# 9. Run safety checker | |
image, has_nsfw_concept = self.run_safety_checker( | |
image, device, prompt_embeds.dtype | |
) | |
# 10. Convert to PIL | |
image = self.numpy_to_pil(image) | |
else: | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
# 9. Run safety checker | |
image, has_nsfw_concept = self.run_safety_checker( | |
image, device, prompt_embeds.dtype | |
) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
self.doc = None | |
self.subtrees_indices = None | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput( | |
images=image, nsfw_content_detected=has_nsfw_concept | |
) | |
def _syngen_step( | |
self, | |
latents, | |
text_embeddings, | |
t, | |
i, | |
step_size, | |
cross_attention_kwargs, | |
prompt, | |
max_iter_to_alter=25, | |
): | |
with torch.enable_grad(): | |
latents = latents.clone().detach().requires_grad_(True) | |
updated_latents = [] | |
for latent, text_embedding in zip(latents, text_embeddings): | |
# Forward pass of denoising with text conditioning | |
latent = latent.unsqueeze(0) | |
text_embedding = text_embedding.unsqueeze(0) | |
self.unet( | |
latent, | |
t, | |
encoder_hidden_states=text_embedding, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
self.unet.zero_grad() | |
# Get attention maps | |
attention_maps = self._aggregate_and_get_attention_maps_per_token() | |
loss = self._compute_loss(attention_maps=attention_maps, prompt=prompt) | |
# Perform gradient update | |
if i < max_iter_to_alter: | |
if loss != 0: | |
latent = self._update_latent( | |
latents=latent, loss=loss, step_size=step_size | |
) | |
logger.info(f"Iteration {i} | Loss: {loss:0.4f}") | |
updated_latents.append(latent) | |
latents = torch.cat(updated_latents, dim=0) | |
return latents | |
def _compute_loss( | |
self, attention_maps: List[torch.Tensor], prompt: Union[str, List[str]] | |
) -> torch.Tensor: | |
attn_map_idx_to_wp = get_attention_map_index_to_wordpiece(self.tokenizer, prompt) | |
loss = self._attribution_loss(attention_maps, prompt, attn_map_idx_to_wp) | |
return loss | |
def _attribution_loss( | |
self, | |
attention_maps: List[torch.Tensor], | |
prompt: Union[str, List[str]], | |
attn_map_idx_to_wp, | |
) -> torch.Tensor: | |
if not self.subtrees_indices: | |
self.subtrees_indices = self._extract_attribution_indices(prompt) | |
subtrees_indices = self.subtrees_indices | |
loss = 0 | |
for subtree_indices in subtrees_indices: | |
noun, modifier = split_indices(subtree_indices) | |
all_subtree_pairs = list(itertools.product(noun, modifier)) | |
positive_loss, negative_loss = self._calculate_losses( | |
attention_maps, | |
all_subtree_pairs, | |
subtree_indices, | |
attn_map_idx_to_wp, | |
) | |
loss += positive_loss | |
loss += negative_loss | |
return loss | |
def _calculate_losses( | |
self, | |
attention_maps, | |
all_subtree_pairs, | |
subtree_indices, | |
attn_map_idx_to_wp, | |
): | |
positive_loss = [] | |
negative_loss = [] | |
for pair in all_subtree_pairs: | |
noun, modifier = pair | |
positive_loss.append( | |
calculate_positive_loss(attention_maps, modifier, noun) | |
) | |
negative_loss.append( | |
calculate_negative_loss( | |
attention_maps, modifier, noun, subtree_indices, attn_map_idx_to_wp | |
) | |
) | |
positive_loss = sum(positive_loss) | |
negative_loss = sum(negative_loss) | |
return positive_loss, negative_loss | |
def _align_indices(self, prompt, spacy_pairs): | |
wordpieces2indices = get_indices(self.tokenizer, prompt) | |
paired_indices = [] | |
collected_spacy_indices = ( | |
set() | |
) # helps track recurring nouns across different relations (i.e., cases where there is more than one instance of the same word) | |
for pair in spacy_pairs: | |
curr_collected_wp_indices = ( | |
[] | |
) # helps track which nouns and amods were added to the current pair (this is useful in sentences with repeating amod on the same relation (e.g., "a red red red bear")) | |
for member in pair: | |
for idx, wp in wordpieces2indices.items(): | |
if wp in [start_token, end_token]: | |
continue | |
wp = wp.replace("</w>", "") | |
if member.text == wp: | |
if idx not in curr_collected_wp_indices and idx not in collected_spacy_indices: | |
curr_collected_wp_indices.append(idx) | |
break | |
# take care of wordpieces that are split up | |
elif member.text.startswith(wp) and wp != member.text: # can maybe be while loop | |
wp_indices = align_wordpieces_indices( | |
wordpieces2indices, idx, member.text | |
) | |
# check if all wp_indices are not already in collected_spacy_indices | |
if wp_indices and (wp_indices not in curr_collected_wp_indices) and all([wp_idx not in collected_spacy_indices for wp_idx in wp_indices]): | |
curr_collected_wp_indices.append(wp_indices) | |
break | |
for collected_idx in curr_collected_wp_indices: | |
if isinstance(collected_idx, list): | |
for idx in collected_idx: | |
collected_spacy_indices.add(idx) | |
else: | |
collected_spacy_indices.add(collected_idx) | |
paired_indices.append(curr_collected_wp_indices) | |
return paired_indices | |
def _extract_attribution_indices(self, prompt): | |
# extract standard attribution indices | |
pairs = extract_attribution_indices(self.doc) | |
# extract attribution indices with verbs in between | |
pairs_2 = extract_attribution_indices_with_verb_root(self.doc) | |
pairs_3 = extract_attribution_indices_with_verbs(self.doc) | |
# make sure there are no duplicates | |
pairs = unify_lists(pairs, pairs_2, pairs_3) | |
print(f"Final pairs collected: {pairs}") | |
paired_indices = self._align_indices(prompt, pairs) | |
return paired_indices | |
def _get_attention_maps_list( | |
attention_maps: torch.Tensor | |
) -> List[torch.Tensor]: | |
attention_maps *= 100 | |
attention_maps_list = [ | |
attention_maps[:, :, i] for i in range(attention_maps.shape[2]) | |
] | |
return attention_maps_list | |
def is_sublist(sub, main): | |
# This function checks if 'sub' is a sublist of 'main' | |
return len(sub) < len(main) and all(item in main for item in sub) | |
def unify_lists(lists_1, lists_2, lists_3): | |
unified_list = lists_1 + lists_2 + lists_3 | |
sorted_list = sorted(unified_list, key=len) | |
seen = set() | |
result = [] | |
for i in range(len(sorted_list)): | |
if tuple(sorted_list[i]) in seen: # Skip if already added | |
continue | |
sublist_to_add = True | |
for j in range(i + 1, len(sorted_list)): | |
if is_sublist(sorted_list[i], sorted_list[j]): | |
sublist_to_add = False | |
break | |
if sublist_to_add: | |
result.append(sorted_list[i]) | |
seen.add(tuple(sorted_list[i])) | |
return result | |