Spaces:
Sleeping
Sleeping
File size: 21,468 Bytes
e47c7c5 db3cb87 e47c7c5 db3cb87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import itertools
from typing import Any, Callable, Dict, Optional, Union, List
import spacy
import torch
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
EXAMPLE_DOC_STRING,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_attend_and_excite import (
AttentionStore,
AttendExciteCrossAttnProcessor,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
logging,
replace_example_docstring,
)
from transformers import CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor
from compute_loss import get_attention_map_index_to_wordpiece, split_indices, calculate_positive_loss, calculate_negative_loss, get_indices, start_token, end_token, \
align_wordpieces_indices, extract_attribution_indices
logger = logging.get_logger(__name__)
class SynGenDiffusionPipeline(StableDiffusionPipeline):
def __init__(self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor,
requires_safety_checker)
self.parser = spacy.load("en_core_web_trf")
def _aggregate_and_get_attention_maps_per_token(self):
attention_maps = self.attention_store.aggregate_attention(
from_where=("up", "down", "mid"),
)
attention_maps_list = _get_attention_maps_list(
attention_maps=attention_maps
)
return attention_maps_list
@staticmethod
def _update_latent(
latents: torch.Tensor, loss: torch.Tensor, step_size: float
) -> torch.Tensor:
"""Update the latent according to the computed loss."""
grad_cond = torch.autograd.grad(
loss.requires_grad_(True), [latents], retain_graph=True
)[0]
latents = latents - step_size * grad_cond
return latents
def register_attention_control(self):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
if name.startswith("mid_block"):
place_in_unet = "mid"
elif name.startswith("up_blocks"):
place_in_unet = "up"
elif name.startswith("down_blocks"):
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = AttendExciteCrossAttnProcessor(
attnstore=self.attention_store, place_in_unet=place_in_unet
)
self.unet.set_attn_processor(attn_procs)
self.attention_store.num_att_layers = cross_att_count
# Based on StableDiffusionPipeline.__call__ . New code is annotated with NEW.
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
syngen_step_size: float = 20.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
syngen_step_size (`int`, *optional*, default to 20):
Controls the step size of each SynGen update.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# NEW - stores the attention calculated in the unet
self.attention_store = AttentionStore()
self.register_attention_control()
# NEW
text_embeddings = (
prompt_embeds[batch_size * num_images_per_prompt:] if do_classifier_free_guidance else prompt_embeds
)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# NEW
latents = self._syngen_step(
latents,
text_embeddings,
t,
i,
syngen_step_size,
cross_attention_kwargs,
prompt,
max_iter_to_alter=25,
)
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept
)
def _syngen_step(
self,
latents,
text_embeddings,
t,
i,
step_size,
cross_attention_kwargs,
prompt,
max_iter_to_alter=25,
):
with torch.enable_grad():
latents = latents.clone().detach().requires_grad_(True)
updated_latents = []
for latent, text_embedding in zip(latents, text_embeddings):
# Forward pass of denoising with text conditioning
latent = latent.unsqueeze(0)
text_embedding = text_embedding.unsqueeze(0)
self.unet(
latent,
t,
encoder_hidden_states=text_embedding,
cross_attention_kwargs=cross_attention_kwargs,
).sample
self.unet.zero_grad()
# Get attention maps
attention_maps = self._aggregate_and_get_attention_maps_per_token()
loss = self._compute_loss(attention_maps=attention_maps, prompt=prompt)
# Perform gradient update
if i < max_iter_to_alter:
if loss != 0:
latent = self._update_latent(
latents=latent, loss=loss, step_size=step_size
)
logger.info(f"Iteration {i} | Loss: {loss:0.4f}")
updated_latents.append(latent)
latents = torch.cat(updated_latents, dim=0)
return latents
def _compute_loss(
self, attention_maps: List[torch.Tensor], prompt: Union[str, List[str]]
) -> torch.Tensor:
attn_map_idx_to_wp = get_attention_map_index_to_wordpiece(self.tokenizer, prompt)
loss = self._attribution_loss(attention_maps, prompt, attn_map_idx_to_wp)
return loss
def _attribution_loss(
self,
attention_maps: List[torch.Tensor],
prompt: Union[str, List[str]],
attn_map_idx_to_wp,
) -> torch.Tensor:
subtrees_indices = self._extract_attribution_indices(prompt)
loss = 0
for subtree_indices in subtrees_indices:
noun, modifier = split_indices(subtree_indices)
all_subtree_pairs = list(itertools.product(noun, modifier))
positive_loss, negative_loss = self._calculate_losses(
attention_maps,
all_subtree_pairs,
subtree_indices,
attn_map_idx_to_wp,
)
loss += positive_loss
loss += negative_loss
return loss
def _calculate_losses(
self,
attention_maps,
all_subtree_pairs,
subtree_indices,
attn_map_idx_to_wp,
):
positive_loss = []
negative_loss = []
for pair in all_subtree_pairs:
noun, modifier = pair
positive_loss.append(
calculate_positive_loss(attention_maps, modifier, noun)
)
negative_loss.append(
calculate_negative_loss(
attention_maps, modifier, noun, subtree_indices, attn_map_idx_to_wp
)
)
positive_loss = sum(positive_loss)
negative_loss = sum(negative_loss)
return positive_loss, negative_loss
def _align_indices(self, prompt, spacy_pairs):
wordpieces2indices = get_indices(self.tokenizer, prompt)
paired_indices = []
collected_spacy_indices = (
set()
) # helps track recurring nouns across different relations (i.e., cases where there is more than one instance of the same word)
for pair in spacy_pairs:
curr_collected_wp_indices = (
[]
) # helps track which nouns and amods were added to the current pair (this is useful in sentences with repeating amod on the same relation (e.g., "a red red red bear"))
for member in pair:
for idx, wp in wordpieces2indices.items():
if wp in [start_token, end_token]:
continue
wp = wp.replace("</w>", "")
if member.text == wp:
if idx not in curr_collected_wp_indices and idx not in collected_spacy_indices:
curr_collected_wp_indices.append(idx)
break
# take care of wordpieces that are split up
elif member.text.startswith(wp) and wp != member.text: # can maybe be while loop
wp_indices = align_wordpieces_indices(
wordpieces2indices, idx, member.text
)
# check if all wp_indices are not already in collected_spacy_indices
if wp_indices and (wp_indices not in curr_collected_wp_indices) and all([wp_idx not in collected_spacy_indices for wp_idx in wp_indices]):
curr_collected_wp_indices.append(wp_indices)
break
for collected_idx in curr_collected_wp_indices:
if isinstance(collected_idx, list):
for idx in collected_idx:
collected_spacy_indices.add(idx)
else:
collected_spacy_indices.add(collected_idx)
paired_indices.append(curr_collected_wp_indices)
return paired_indices
def _extract_attribution_indices(self, prompt):
pairs = extract_attribution_indices(prompt, self.parser)
paired_indices = self._align_indices(prompt, pairs)
return paired_indices
def _get_attention_maps_list(
attention_maps: torch.Tensor
) -> List[torch.Tensor]:
attention_maps *= 100
attention_maps_list = [
attention_maps[:, :, i] for i in range(attention_maps.shape[2])
]
return attention_maps_list |