File size: 21,468 Bytes
e47c7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db3cb87
e47c7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db3cb87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import itertools
from typing import Any, Callable, Dict, Optional, Union, List

import spacy
import torch
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
    EXAMPLE_DOC_STRING,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_attend_and_excite import (
    AttentionStore,
    AttendExciteCrossAttnProcessor,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    logging,
    replace_example_docstring,
)
from transformers import CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor

from compute_loss import get_attention_map_index_to_wordpiece, split_indices, calculate_positive_loss, calculate_negative_loss, get_indices, start_token, end_token, \
    align_wordpieces_indices, extract_attribution_indices

logger = logging.get_logger(__name__)


class SynGenDiffusionPipeline(StableDiffusionPipeline):
    def __init__(self,
                 vae: AutoencoderKL,
                 text_encoder: CLIPTextModel,
                 tokenizer: CLIPTokenizer,
                 unet: UNet2DConditionModel,
                 scheduler: KarrasDiffusionSchedulers,
                 safety_checker: StableDiffusionSafetyChecker,
                 feature_extractor: CLIPFeatureExtractor,
                 requires_safety_checker: bool = True,
                 ):
        super().__init__(vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor,
                         requires_safety_checker)

        self.parser = spacy.load("en_core_web_trf")

    def _aggregate_and_get_attention_maps_per_token(self):
        attention_maps = self.attention_store.aggregate_attention(
            from_where=("up", "down", "mid"),
        )
        attention_maps_list = _get_attention_maps_list(
            attention_maps=attention_maps
        )
        return attention_maps_list

    @staticmethod
    def _update_latent(
            latents: torch.Tensor, loss: torch.Tensor, step_size: float
    ) -> torch.Tensor:
        """Update the latent according to the computed loss."""
        grad_cond = torch.autograd.grad(
            loss.requires_grad_(True), [latents], retain_graph=True
        )[0]
        latents = latents - step_size * grad_cond
        return latents

    def register_attention_control(self):
        attn_procs = {}
        cross_att_count = 0
        for name in self.unet.attn_processors.keys():
            if name.startswith("mid_block"):
                place_in_unet = "mid"
            elif name.startswith("up_blocks"):
                place_in_unet = "up"
            elif name.startswith("down_blocks"):
                place_in_unet = "down"
            else:
                continue

            cross_att_count += 1
            attn_procs[name] = AttendExciteCrossAttnProcessor(
                attnstore=self.attention_store, place_in_unet=place_in_unet
            )

        self.unet.set_attn_processor(attn_procs)
        self.attention_store.num_att_layers = cross_att_count

    # Based on StableDiffusionPipeline.__call__ . New code is annotated with NEW.
    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
            self,
            prompt: Union[str, List[str]] = None,
            height: Optional[int] = None,
            width: Optional[int] = None,
            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            num_images_per_prompt: Optional[int] = 1,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.FloatTensor] = None,
            prompt_embeds: Optional[torch.FloatTensor] = None,
            negative_prompt_embeds: Optional[torch.FloatTensor] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
            callback_steps: int = 1,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            syngen_step_size: float = 20.0,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
            syngen_step_size (`int`, *optional*, default to 20):
                Controls the step size of each SynGen update.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # NEW - stores the attention calculated in the unet
        self.attention_store = AttentionStore()
        self.register_attention_control()

        # NEW
        text_embeddings = (
            prompt_embeds[batch_size * num_images_per_prompt:] if do_classifier_free_guidance else prompt_embeds
        )

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # NEW
                latents = self._syngen_step(
                    latents,
                    text_embeddings,
                    t,
                    i,
                    syngen_step_size,
                    cross_attention_kwargs,
                    prompt,
                    max_iter_to_alter=25,
                )

                # expand the latents if we are doing classifier free guidance
                latent_model_input = (
                    torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                )
                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t
                )

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                            noise_pred_text - noise_pred_uncond
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs
                ).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                        (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if output_type == "latent":
            image = latents
            has_nsfw_concept = None
        elif output_type == "pil":
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(
                image, device, prompt_embeds.dtype
            )

            # 10. Convert to PIL
            image = self.numpy_to_pil(image)
        else:
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(
                image, device, prompt_embeds.dtype
            )

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(
            images=image, nsfw_content_detected=has_nsfw_concept
        )

    def _syngen_step(
            self,
            latents,
            text_embeddings,
            t,
            i,
            step_size,
            cross_attention_kwargs,
            prompt,
            max_iter_to_alter=25,
    ):
        with torch.enable_grad():
            latents = latents.clone().detach().requires_grad_(True)
            updated_latents = []
            for latent, text_embedding in zip(latents, text_embeddings):
                # Forward pass of denoising with text conditioning
                latent = latent.unsqueeze(0)
                text_embedding = text_embedding.unsqueeze(0)

                self.unet(
                    latent,
                    t,
                    encoder_hidden_states=text_embedding,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample
                self.unet.zero_grad()

                # Get attention maps
                attention_maps = self._aggregate_and_get_attention_maps_per_token()

                loss = self._compute_loss(attention_maps=attention_maps, prompt=prompt)

                # Perform gradient update
                if i < max_iter_to_alter:
                    if loss != 0:
                        latent = self._update_latent(
                            latents=latent, loss=loss, step_size=step_size
                        )
                    logger.info(f"Iteration {i} | Loss: {loss:0.4f}")

            updated_latents.append(latent)

        latents = torch.cat(updated_latents, dim=0)

        return latents

    def _compute_loss(
            self, attention_maps: List[torch.Tensor], prompt: Union[str, List[str]]
    ) -> torch.Tensor:
        attn_map_idx_to_wp = get_attention_map_index_to_wordpiece(self.tokenizer, prompt)
        loss = self._attribution_loss(attention_maps, prompt, attn_map_idx_to_wp)

        return loss


    def _attribution_loss(
            self,
            attention_maps: List[torch.Tensor],
            prompt: Union[str, List[str]],
            attn_map_idx_to_wp,
    ) -> torch.Tensor:
        subtrees_indices = self._extract_attribution_indices(prompt)
        loss = 0

        for subtree_indices in subtrees_indices:
            noun, modifier = split_indices(subtree_indices)
            all_subtree_pairs = list(itertools.product(noun, modifier))
            positive_loss, negative_loss = self._calculate_losses(
                attention_maps,
                all_subtree_pairs,
                subtree_indices,
                attn_map_idx_to_wp,
            )
            loss += positive_loss
            loss += negative_loss

        return loss

    def _calculate_losses(
            self,
            attention_maps,
            all_subtree_pairs,
            subtree_indices,
            attn_map_idx_to_wp,
    ):
        positive_loss = []
        negative_loss = []
        for pair in all_subtree_pairs:
            noun, modifier = pair
            positive_loss.append(
                calculate_positive_loss(attention_maps, modifier, noun)
            )
            negative_loss.append(
                calculate_negative_loss(
                    attention_maps, modifier, noun, subtree_indices, attn_map_idx_to_wp
                )
            )

        positive_loss = sum(positive_loss)
        negative_loss = sum(negative_loss)

        return positive_loss, negative_loss

    def _align_indices(self, prompt, spacy_pairs):
        wordpieces2indices = get_indices(self.tokenizer, prompt)
        paired_indices = []
        collected_spacy_indices = (
            set()
        )  # helps track recurring nouns across different relations (i.e., cases where there is more than one instance of the same word)

        for pair in spacy_pairs:
            curr_collected_wp_indices = (
                []
            )  # helps track which nouns and amods were added to the current pair (this is useful in sentences with repeating amod on the same relation (e.g., "a red red red bear"))
            for member in pair:
                for idx, wp in wordpieces2indices.items():
                    if wp in [start_token, end_token]:
                        continue

                    wp = wp.replace("</w>", "")
                    if member.text == wp:
                        if idx not in curr_collected_wp_indices and idx not in collected_spacy_indices:
                            curr_collected_wp_indices.append(idx)
                            break
                    # take care of wordpieces that are split up
                    elif member.text.startswith(wp) and wp != member.text:  # can maybe be while loop
                        wp_indices = align_wordpieces_indices(
                            wordpieces2indices, idx, member.text
                        )
                        # check if all wp_indices are not already in collected_spacy_indices
                        if wp_indices and (wp_indices not in curr_collected_wp_indices) and all([wp_idx not in collected_spacy_indices for wp_idx in wp_indices]):
                            curr_collected_wp_indices.append(wp_indices)
                            break

            for collected_idx in curr_collected_wp_indices:
                if isinstance(collected_idx, list):
                    for idx in collected_idx:
                        collected_spacy_indices.add(idx)
                else:
                    collected_spacy_indices.add(collected_idx)

            paired_indices.append(curr_collected_wp_indices)
            
        return paired_indices

    def _extract_attribution_indices(self, prompt):
        pairs = extract_attribution_indices(prompt, self.parser)
        paired_indices = self._align_indices(prompt, pairs)
        return paired_indices



def _get_attention_maps_list(
        attention_maps: torch.Tensor
) -> List[torch.Tensor]:
    attention_maps *= 100
    attention_maps_list = [
        attention_maps[:, :, i] for i in range(attention_maps.shape[2])
    ]

    return attention_maps_list