Spaces:
Runtime error
Runtime error
# -*- coding:utf-8 -*- | |
from __future__ import annotations | |
from typing import TYPE_CHECKING, List | |
import logging | |
import json | |
import os | |
import requests | |
from tqdm import tqdm | |
import colorama | |
from duckduckgo_search import ddg | |
from presets import * | |
from llama_func import * | |
from utils import * | |
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s") | |
if TYPE_CHECKING: | |
from typing import TypedDict | |
class DataframeData(TypedDict): | |
headers: List[str] | |
data: List[List[str | int | bool]] | |
initial_prompt = "You are a helpful assistant." | |
API_URL = "https://api.openai.com/v1/chat/completions" | |
HISTORY_DIR = "history" | |
TEMPLATES_DIR = "templates" | |
def get_response( | |
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model | |
): | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}", | |
} | |
history = [construct_system(system_prompt), *history] | |
payload = { | |
"model": selected_model, | |
"messages": history, # [{"role": "user", "content": f"{inputs}"}], | |
"temperature": temperature, # 1.0, | |
"top_p": top_p, # 1.0, | |
"n": 1, | |
"stream": stream, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
} | |
if stream: | |
timeout = timeout_streaming | |
else: | |
timeout = timeout_all | |
# 获取环境变量中的代理设置 | |
http_proxy = os.environ.get("HTTP_PROXY") or os.environ.get("http_proxy") | |
https_proxy = os.environ.get("HTTPS_PROXY") or os.environ.get("https_proxy") | |
# 如果存在代理设置,使用它们 | |
proxies = {} | |
if http_proxy: | |
logging.info(f"Using HTTP proxy: {http_proxy}") | |
proxies["http"] = http_proxy | |
if https_proxy: | |
logging.info(f"Using HTTPS proxy: {https_proxy}") | |
proxies["https"] = https_proxy | |
# 如果有代理,使用代理发送请求,否则使用默认设置发送请求 | |
if proxies: | |
response = requests.post( | |
API_URL, | |
headers=headers, | |
json=payload, | |
stream=True, | |
timeout=timeout, | |
proxies=proxies, | |
) | |
else: | |
response = requests.post( | |
API_URL, | |
headers=headers, | |
json=payload, | |
stream=True, | |
timeout=timeout, | |
) | |
return response | |
def stream_predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
): | |
def get_return_value(): | |
return chatbot, history, status_text, all_token_counts | |
logging.info("实时回答模式") | |
partial_words = "" | |
counter = 0 | |
status_text = "开始实时传输回答……" | |
history.append(construct_user(inputs)) | |
history.append(construct_assistant("")) | |
chatbot.append((parse_text(inputs), "")) | |
user_token_count = 0 | |
if len(all_token_counts) == 0: | |
system_prompt_token_count = count_token(construct_system(system_prompt)) | |
user_token_count = ( | |
count_token(construct_user(inputs)) + system_prompt_token_count | |
) | |
else: | |
user_token_count = count_token(construct_user(inputs)) | |
all_token_counts.append(user_token_count) | |
logging.info(f"输入token计数: {user_token_count}") | |
yield get_return_value() | |
try: | |
response = get_response( | |
openai_api_key, | |
system_prompt, | |
history, | |
temperature, | |
top_p, | |
True, | |
selected_model, | |
) | |
except requests.exceptions.ConnectTimeout: | |
status_text = ( | |
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
) | |
yield get_return_value() | |
return | |
except requests.exceptions.ReadTimeout: | |
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt | |
yield get_return_value() | |
return | |
yield get_return_value() | |
error_json_str = "" | |
for chunk in tqdm(response.iter_lines()): | |
if counter == 0: | |
counter += 1 | |
continue | |
counter += 1 | |
# check whether each line is non-empty | |
if chunk: | |
chunk = chunk.decode() | |
chunklength = len(chunk) | |
try: | |
chunk = json.loads(chunk[6:]) | |
except json.JSONDecodeError: | |
logging.info(chunk) | |
error_json_str += chunk | |
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}" | |
yield get_return_value() | |
continue | |
# decode each line as response data is in bytes | |
if chunklength > 6 and "delta" in chunk["choices"][0]: | |
finish_reason = chunk["choices"][0]["finish_reason"] | |
status_text = construct_token_message( | |
sum(all_token_counts), stream=True | |
) | |
if finish_reason == "stop": | |
yield get_return_value() | |
break | |
try: | |
partial_words = ( | |
partial_words + chunk["choices"][0]["delta"]["content"] | |
) | |
except KeyError: | |
status_text = ( | |
standard_error_msg | |
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " | |
+ str(sum(all_token_counts)) | |
) | |
yield get_return_value() | |
break | |
history[-1] = construct_assistant(partial_words) | |
chatbot[-1] = (parse_text(inputs), parse_text(partial_words)) | |
all_token_counts[-1] += 1 | |
yield get_return_value() | |
def predict_all( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
): | |
logging.info("一次性回答模式") | |
history.append(construct_user(inputs)) | |
history.append(construct_assistant("")) | |
chatbot.append((parse_text(inputs), "")) | |
all_token_counts.append(count_token(construct_user(inputs))) | |
try: | |
response = get_response( | |
openai_api_key, | |
system_prompt, | |
history, | |
temperature, | |
top_p, | |
False, | |
selected_model, | |
) | |
except requests.exceptions.ConnectTimeout: | |
status_text = ( | |
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
) | |
return chatbot, history, status_text, all_token_counts | |
except requests.exceptions.ProxyError: | |
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt | |
return chatbot, history, status_text, all_token_counts | |
except requests.exceptions.SSLError: | |
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt | |
return chatbot, history, status_text, all_token_counts | |
response = json.loads(response.text) | |
content = response["choices"][0]["message"]["content"] | |
history[-1] = construct_assistant(content) | |
chatbot[-1] = (parse_text(inputs), parse_text(content)) | |
total_token_count = response["usage"]["total_tokens"] | |
all_token_counts[-1] = total_token_count - sum(all_token_counts) | |
status_text = construct_token_message(total_token_count) | |
return chatbot, history, status_text, all_token_counts | |
def predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=MODELS[0], | |
use_websearch_checkbox=False, | |
files = None, | |
should_check_token_count=True, | |
): # repetition_penalty, top_k | |
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL) | |
if files: | |
msg = "构建索引中……(这可能需要比较久的时间)" | |
logging.info(msg) | |
yield chatbot, history, msg, all_token_counts | |
index = construct_index(openai_api_key, file_src=files) | |
msg = "索引构建完成,获取回答中……" | |
yield chatbot, history, msg, all_token_counts | |
history, chatbot, status_text = chat_ai(openai_api_key, index, inputs, history, chatbot) | |
yield chatbot, history, status_text, all_token_counts | |
return | |
if use_websearch_checkbox: | |
results = ddg(inputs, max_results=3) | |
web_results = [] | |
for idx, result in enumerate(results): | |
logging.info(f"搜索结果{idx + 1}:{result}") | |
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}') | |
web_results = "\n\n".join(web_results) | |
inputs = ( | |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE) | |
.replace("{query}", inputs) | |
.replace("{web_results}", web_results) | |
) | |
if len(openai_api_key) != 51: | |
status_text = standard_error_msg + no_apikey_msg | |
logging.info(status_text) | |
chatbot.append((parse_text(inputs), "")) | |
if len(history) == 0: | |
history.append(construct_user(inputs)) | |
history.append("") | |
all_token_counts.append(0) | |
else: | |
history[-2] = construct_user(inputs) | |
yield chatbot, history, status_text, all_token_counts | |
return | |
if stream: | |
yield chatbot, history, "开始生成回答……", all_token_counts | |
if stream: | |
logging.info("使用流式传输") | |
iter = stream_predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
) | |
for chatbot, history, status_text, all_token_counts in iter: | |
yield chatbot, history, status_text, all_token_counts | |
else: | |
logging.info("不使用流式传输") | |
chatbot, history, status_text, all_token_counts = predict_all( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
) | |
yield chatbot, history, status_text, all_token_counts | |
logging.info(f"传输完毕。当前token计数为{all_token_counts}") | |
if len(history) > 1 and history[-1]["content"] != inputs: | |
logging.info( | |
"回答为:" | |
+ colorama.Fore.BLUE | |
+ f"{history[-1]['content']}" | |
+ colorama.Style.RESET_ALL | |
) | |
if stream: | |
max_token = max_token_streaming | |
else: | |
max_token = max_token_all | |
if sum(all_token_counts) > max_token and should_check_token_count: | |
status_text = f"精简token中{all_token_counts}/{max_token}" | |
logging.info(status_text) | |
yield chatbot, history, status_text, all_token_counts | |
iter = reduce_token_size( | |
openai_api_key, | |
system_prompt, | |
history, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=selected_model, | |
hidden=True, | |
) | |
for chatbot, history, status_text, all_token_counts in iter: | |
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}" | |
yield chatbot, history, status_text, all_token_counts | |
def retry( | |
openai_api_key, | |
system_prompt, | |
history, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=MODELS[0], | |
): | |
logging.info("重试中……") | |
if len(history) == 0: | |
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count | |
return | |
history.pop() | |
inputs = history.pop()["content"] | |
token_count.pop() | |
iter = predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=stream, | |
selected_model=selected_model, | |
) | |
logging.info("重试完毕") | |
for x in iter: | |
yield x | |
def reduce_token_size( | |
openai_api_key, | |
system_prompt, | |
history, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=MODELS[0], | |
hidden=False, | |
): | |
logging.info("开始减少token数量……") | |
iter = predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
summarize_prompt, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=stream, | |
selected_model=selected_model, | |
should_check_token_count=False, | |
) | |
logging.info(f"chatbot: {chatbot}") | |
for chatbot, history, status_text, previous_token_count in iter: | |
history = history[-2:] | |
token_count = previous_token_count[-1:] | |
if hidden: | |
chatbot.pop() | |
yield chatbot, history, construct_token_message( | |
sum(token_count), stream=stream | |
), token_count | |
logging.info("减少token数量完毕") |