Jordan Legg commited on
Commit
e06d9b6
Β·
1 Parent(s): 51e970b

added more details

Browse files
Files changed (1) hide show
  1. app.py +49 -12
app.py CHANGED
@@ -1,13 +1,12 @@
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- import spaces
5
  import torch
6
  from diffusers import DiffusionPipeline
7
 
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
-
11
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
@@ -19,30 +18,68 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
19
  seed = random.randint(0, MAX_SEED)
20
  generator = torch.Generator().manual_seed(seed)
21
  image = pipe(
22
- prompt = prompt,
23
- width = width,
24
- height = height,
25
- num_inference_steps = num_inference_steps,
26
- generator = generator,
27
- guidance_scale=0.0
28
- ).images[0]
29
  return image, seed
30
 
 
 
 
31
  # Gradio interface
32
  with gr.Blocks() as demo:
33
  gr.Markdown("# FLUX.1 [schnell] Image Generator")
 
34
  with gr.Row():
35
- with gr.Column():
36
- prompt = gr.Textbox(label="Prompt")
 
 
 
 
 
 
 
 
 
 
 
 
37
  run_button = gr.Button("Generate")
38
- with gr.Column():
39
  result = gr.Image(label="Generated Image")
 
 
 
 
 
 
 
 
 
40
  with gr.Accordion("Advanced Settings", open=False):
41
  seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", randomize=True)
42
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
43
  width = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
44
  height = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Height")
45
  num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=4, label="Number of inference steps")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  run_button.click(
48
  infer,
 
1
+ import spaces
2
  import gradio as gr
3
  import numpy as np
4
  import random
 
5
  import torch
6
  from diffusers import DiffusionPipeline
7
 
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
10
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
11
 
12
  MAX_SEED = np.iinfo(np.int32).max
 
18
  seed = random.randint(0, MAX_SEED)
19
  generator = torch.Generator().manual_seed(seed)
20
  image = pipe(
21
+ prompt=prompt,
22
+ width=width,
23
+ height=height,
24
+ num_inference_steps=num_inference_steps,
25
+ generator=generator,
26
+ guidance_scale=0.0
27
+ ).images[0]
28
  return image, seed
29
 
30
+ # Example prompt
31
+ example_prompt = "A vibrant red origami crane on a white background, intricate paper folds, studio lighting"
32
+
33
  # Gradio interface
34
  with gr.Blocks() as demo:
35
  gr.Markdown("# FLUX.1 [schnell] Image Generator")
36
+
37
  with gr.Row():
38
+ with gr.Column(scale=2):
39
+ gr.Markdown("""
40
+ ## About FLUX.1 [schnell]
41
+ - Fast text-to-image model optimized for local development and personal use
42
+ - Part of the FLUX.1 model family by Black Forest Labs
43
+ - Open-source: Available under Apache 2.0 license
44
+ - Supports resolutions between 0.1 and 2.0 megapixels
45
+ - Outperforms many larger models in quality and prompt adherence
46
+ - Uses advanced transformer architecture with flow matching techniques
47
+ - Capable of generating high-quality images in just a few inference steps
48
+ """)
49
+
50
+ with gr.Column(scale=3):
51
+ prompt = gr.Textbox(label="Prompt", placeholder="Enter your image description here...", value=example_prompt)
52
  run_button = gr.Button("Generate")
 
53
  result = gr.Image(label="Generated Image")
54
+
55
+ gr.Markdown("""
56
+ ## Example Prompt
57
+ Try this example prompt or modify it to see how FLUX.1 [schnell] performs:
58
+ ```
59
+ A vibrant red origami crane on a white background, intricate paper folds, studio lighting
60
+ ```
61
+ """)
62
+
63
  with gr.Accordion("Advanced Settings", open=False):
64
  seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", randomize=True)
65
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
66
  width = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
67
  height = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Height")
68
  num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=4, label="Number of inference steps")
69
+
70
+ gr.Markdown("""
71
+ **Note:** FLUX.1 [schnell] is optimized for speed and can produce high-quality results with just a few inference steps.
72
+ Adjust the number of steps based on your speed/quality preference. More steps may improve quality but will increase generation time.
73
+ """)
74
+
75
+ gr.Markdown("""
76
+ ## Additional Information
77
+ - FLUX.1 [schnell] is based on a hybrid architecture of multimodal and parallel diffusion transformer blocks
78
+ - It supports various aspect ratios within the 0.1 to 2.0 megapixel range
79
+ - The model uses bfloat16 precision for efficient computation
80
+ - For optimal performance, running on a CUDA-enabled GPU is recommended
81
+ - For more details and other FLUX.1 variants, visit [Black Forest Labs](https://blackforestlabs.ai)
82
+ """)
83
 
84
  run_button.click(
85
  infer,