Spaces:
Build error
Build error
File size: 13,642 Bytes
222619b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import filecmp
import matplotlib
from utils.plot import spec_to_figure
matplotlib.use('Agg')
from data_gen.tts.data_gen_utils import get_pitch
from modules.fastspeech.tts_modules import mel2ph_to_dur
from tasks.tts.dataset_utils import BaseTTSDataset
from utils.tts_utils import sequence_mask
from multiprocessing.pool import Pool
from tasks.base_task import data_loader, BaseConcatDataset
from utils.common_schedulers import RSQRTSchedule, NoneSchedule
from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder
import os
import numpy as np
from tqdm import tqdm
import torch.distributed as dist
from tasks.base_task import BaseTask
from utils.hparams import hparams
from utils.text_encoder import TokenTextEncoder
import json
import matplotlib.pyplot as plt
import torch
import torch.optim
import torch.utils.data
import utils
from utils import audio
import pandas as pd
class TTSBaseTask(BaseTask):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset_cls = BaseTTSDataset
self.max_tokens = hparams['max_tokens']
self.max_sentences = hparams['max_sentences']
self.max_valid_tokens = hparams['max_valid_tokens']
if self.max_valid_tokens == -1:
hparams['max_valid_tokens'] = self.max_valid_tokens = self.max_tokens
self.max_valid_sentences = hparams['max_valid_sentences']
if self.max_valid_sentences == -1:
hparams['max_valid_sentences'] = self.max_valid_sentences = self.max_sentences
self.vocoder = None
self.phone_encoder = self.build_phone_encoder(hparams['binary_data_dir'])
self.padding_idx = self.phone_encoder.pad()
self.eos_idx = self.phone_encoder.eos()
self.seg_idx = self.phone_encoder.seg()
self.saving_result_pool = None
self.saving_results_futures = None
self.stats = {}
@data_loader
def train_dataloader(self):
if hparams['train_sets'] != '':
train_sets = hparams['train_sets'].split("|")
# check if all train_sets have the same spk map and dictionary
binary_data_dir = hparams['binary_data_dir']
file_to_cmp = ['phone_set.json']
if os.path.exists(f'{binary_data_dir}/word_set.json'):
file_to_cmp.append('word_set.json')
if hparams['use_spk_id']:
file_to_cmp.append('spk_map.json')
for f in file_to_cmp:
for ds_name in train_sets:
base_file = os.path.join(binary_data_dir, f)
ds_file = os.path.join(ds_name, f)
assert filecmp.cmp(base_file, ds_file), \
f'{f} in {ds_name} is not same with that in {binary_data_dir}.'
train_dataset = BaseConcatDataset([
self.dataset_cls(prefix='train', shuffle=True, data_dir=ds_name) for ds_name in train_sets])
else:
train_dataset = self.dataset_cls(prefix=hparams['train_set_name'], shuffle=True)
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences,
endless=hparams['endless_ds'])
@data_loader
def val_dataloader(self):
valid_dataset = self.dataset_cls(prefix=hparams['valid_set_name'], shuffle=False)
return self.build_dataloader(valid_dataset, False, self.max_valid_tokens, self.max_valid_sentences)
@data_loader
def test_dataloader(self):
test_dataset = self.dataset_cls(prefix=hparams['test_set_name'], shuffle=False)
self.test_dl = self.build_dataloader(
test_dataset, False, self.max_valid_tokens,
self.max_valid_sentences, batch_by_size=False)
return self.test_dl
def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None,
required_batch_size_multiple=-1, endless=False, batch_by_size=True):
devices_cnt = torch.cuda.device_count()
if devices_cnt == 0:
devices_cnt = 1
if required_batch_size_multiple == -1:
required_batch_size_multiple = devices_cnt
def shuffle_batches(batches):
np.random.shuffle(batches)
return batches
if max_tokens is not None:
max_tokens *= devices_cnt
if max_sentences is not None:
max_sentences *= devices_cnt
indices = dataset.ordered_indices()
if batch_by_size:
batch_sampler = utils.batch_by_size(
indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
)
else:
batch_sampler = []
for i in range(0, len(indices), max_sentences):
batch_sampler.append(indices[i:i + max_sentences])
if shuffle:
batches = shuffle_batches(list(batch_sampler))
if endless:
batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))]
else:
batches = batch_sampler
if endless:
batches = [b for _ in range(1000) for b in batches]
num_workers = dataset.num_workers
if self.trainer.use_ddp:
num_replicas = dist.get_world_size()
rank = dist.get_rank()
batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0]
return torch.utils.data.DataLoader(dataset,
collate_fn=dataset.collater,
batch_sampler=batches,
num_workers=num_workers,
pin_memory=False)
def build_phone_encoder(self, data_dir):
phone_list_file = os.path.join(data_dir, 'phone_set.json')
phone_list = json.load(open(phone_list_file))
return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',')
def build_scheduler(self, optimizer):
if hparams['scheduler'] == 'rsqrt':
return RSQRTSchedule(optimizer)
else:
return NoneSchedule(optimizer)
def build_optimizer(self, model):
self.optimizer = optimizer = torch.optim.AdamW(
model.parameters(),
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
weight_decay=hparams['weight_decay'])
return optimizer
def plot_mel(self, batch_idx, spec, spec_out, name=None):
spec_cat = torch.cat([spec, spec_out], -1)
name = f'mel_{batch_idx}' if name is None else name
vmin = hparams['mel_vmin']
vmax = hparams['mel_vmax']
self.logger.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step)
def test_start(self):
self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16))
self.saving_results_futures = []
self.results_id = 0
self.gen_dir = os.path.join(
hparams['work_dir'],
f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
self.vocoder: BaseVocoder = get_vocoder_cls(hparams)()
def after_infer(self, predictions, sil_start_frame=0):
predictions = utils.unpack_dict_to_list(predictions)
assert len(predictions) == 1, 'Only support batch_size=1 in inference.'
prediction = predictions[0]
prediction = utils.tensors_to_np(prediction)
item_name = prediction.get('item_name')
text = prediction.get('text')
ph_tokens = prediction.get('txt_tokens')
mel_gt = prediction["mels"]
mel2ph_gt = prediction.get("mel2ph")
mel2ph_gt = mel2ph_gt if mel2ph_gt is not None else None
mel_pred = prediction["outputs"]
mel2ph_pred = prediction.get("mel2ph_pred")
f0_gt = prediction.get("f0")
f0_pred = prediction.get("f0_pred")
str_phs = None
if self.phone_encoder is not None and 'txt_tokens' in prediction:
str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True)
if 'encdec_attn' in prediction:
encdec_attn = prediction['encdec_attn']
encdec_attn = encdec_attn[encdec_attn.max(-1).sum(-1).argmax(-1)]
txt_lengths = prediction.get('txt_lengths')
encdec_attn = encdec_attn.T[:txt_lengths, :len(mel_gt)]
else:
encdec_attn = None
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
wav_pred[:sil_start_frame * hparams['hop_size']] = 0
gen_dir = self.gen_dir
base_fn = f'[{self.results_id:06d}][{item_name}][%s]'
# if text is not None:
# base_fn += text.replace(":", "%3A")[:80]
base_fn = base_fn.replace(' ', '_')
if not hparams['profile_infer']:
os.makedirs(gen_dir, exist_ok=True)
os.makedirs(f'{gen_dir}/wavs', exist_ok=True)
os.makedirs(f'{gen_dir}/plot', exist_ok=True)
if hparams.get('save_mel_npy', False):
os.makedirs(f'{gen_dir}/npy', exist_ok=True)
if 'encdec_attn' in prediction:
os.makedirs(f'{gen_dir}/attn_plot', exist_ok=True)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred, encdec_attn]))
if mel_gt is not None and hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph_gt]))
if hparams['save_f0']:
import matplotlib.pyplot as plt
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
fig = plt.figure()
plt.plot(f0_pred_, label=r'$\hat{f_0}$')
plt.plot(f0_gt_, label=r'$f_0$')
plt.legend()
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png')
plt.close(fig)
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
self.results_id += 1
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.phone_encoder.decode(ph_tokens.tolist()),
'wav_fn_pred': base_fn % 'P',
'wav_fn_gt': base_fn % 'G',
}
@staticmethod
def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None):
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'],
norm=hparams['out_wav_norm'])
fig = plt.figure(figsize=(14, 10))
spec_vmin = hparams['mel_vmin']
spec_vmax = hparams['mel_vmax']
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
fig.colorbar(heatmap)
f0, _ = get_pitch(wav_out, mel, hparams)
f0 = f0 / 10 * (f0 > 0)
plt.plot(f0, c='white', linewidth=1, alpha=0.6)
if mel2ph is not None and str_phs is not None:
decoded_txt = str_phs.split(" ")
dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy()
dur = [0] + list(np.cumsum(dur))
for i in range(len(dur) - 1):
shift = (i % 20) + 1
plt.text(dur[i], shift, decoded_txt[i])
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black')
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black',
alpha=1, linewidth=1)
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png')
plt.close(fig)
if hparams.get('save_mel_npy', False):
np.save(f'{gen_dir}/npy/{base_fn}', mel)
if alignment is not None:
fig, ax = plt.subplots(figsize=(12, 16))
im = ax.imshow(alignment, aspect='auto', origin='lower',
interpolation='none')
decoded_txt = str_phs.split(" ")
ax.set_yticks(np.arange(len(decoded_txt)))
ax.set_yticklabels(list(decoded_txt), fontsize=6)
fig.colorbar(im, ax=ax)
fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png')
plt.close(fig)
def test_end(self, outputs):
pd.DataFrame(outputs).to_csv(f'{self.gen_dir}/meta.csv')
self.saving_result_pool.close()
[f.get() for f in tqdm(self.saving_results_futures)]
self.saving_result_pool.join()
return {}
##########
# utils
##########
def weights_nonzero_speech(self, target):
# target : B x T x mel
# Assign weight 1.0 to all labels except for padding (id=0).
dim = target.size(-1)
return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim)
def make_stop_target(self, target):
# target : B x T x mel
seq_mask = target.abs().sum(-1).ne(0).float()
seq_length = seq_mask.sum(1)
mask_r = 1 - sequence_mask(seq_length - 1, target.size(1)).float()
return seq_mask, mask_r
|