Spaces:
Runtime error
Runtime error
Update sample.py
Browse files
sample.py
CHANGED
@@ -1,60 +1,57 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
-
from io import BytesIO
|
4 |
import torch
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
from utils.torch_utils import select_device
|
14 |
-
|
15 |
-
# Function to load YOLOv5 model
|
16 |
-
@st.cache(allow_output_mutation=True)
|
17 |
-
def load_model(weights='best.pt', device=''):
|
18 |
-
device = select_device(device)
|
19 |
-
model = attempt_load(weights, map_location=device)
|
20 |
return model
|
21 |
|
22 |
-
#
|
23 |
def process_image(image, model):
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
return
|
40 |
|
41 |
-
# Main
|
42 |
def main():
|
43 |
-
st.title('
|
44 |
|
45 |
# Upload image file
|
46 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
47 |
-
|
48 |
if uploaded_file is not None:
|
49 |
-
# Load
|
50 |
model = load_model()
|
51 |
-
|
52 |
# Process uploaded image
|
53 |
image = Image.open(uploaded_file)
|
54 |
st.image(image, caption='Original Image', use_column_width=True)
|
55 |
-
|
56 |
-
|
|
|
57 |
st.image(output_image, caption='Processed Image', use_column_width=True)
|
58 |
|
59 |
if __name__ == '__main__':
|
60 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
|
|
3 |
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from ultralytics import YOLO
|
6 |
+
|
7 |
+
# Load the YOLO model
|
8 |
+
@st.cache
|
9 |
+
def load_model():
|
10 |
+
# Replace 'model.pt' with the path to your YOLO model file
|
11 |
+
model = YOLO('best.pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
return model
|
13 |
|
14 |
+
# Define YOLO processing function
|
15 |
def process_image(image, model):
|
16 |
+
# Preprocess the image
|
17 |
+
preprocess = transforms.Compose([
|
18 |
+
transforms.Resize((416, 416)),
|
19 |
+
transforms.ToTensor(),
|
20 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
21 |
+
])
|
22 |
+
input_tensor = preprocess(image)
|
23 |
+
input_batch = input_tensor.unsqueeze(0)
|
24 |
+
|
25 |
+
# Perform inference
|
26 |
+
with torch.no_grad():
|
27 |
+
output = model(input_batch)
|
28 |
+
|
29 |
+
# Post-process the output (e.g., draw bounding boxes)
|
30 |
+
# Replace this with your post-processing code
|
31 |
+
|
32 |
+
# Convert tensor to PIL Image
|
33 |
+
output_image = transforms.ToPILImage()(output[0].cpu().squeeze())
|
34 |
|
35 |
+
return output_image
|
36 |
|
37 |
+
# Main Streamlit code
|
38 |
def main():
|
39 |
+
st.title('YOLO Image Detection')
|
40 |
|
41 |
# Upload image file
|
42 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
43 |
+
|
44 |
if uploaded_file is not None:
|
45 |
+
# Load YOLO model
|
46 |
model = load_model()
|
47 |
+
|
48 |
# Process uploaded image
|
49 |
image = Image.open(uploaded_file)
|
50 |
st.image(image, caption='Original Image', use_column_width=True)
|
51 |
+
|
52 |
+
output = model.predict(image)
|
53 |
+
output_image = Image.fromarray(output)
|
54 |
st.image(output_image, caption='Processed Image', use_column_width=True)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
+
main()
|