Rohankumar31 commited on
Commit
29c5e29
·
verified ·
1 Parent(s): be24798

Update sample.py

Browse files
Files changed (1) hide show
  1. sample.py +10 -10
sample.py CHANGED
@@ -13,7 +13,7 @@ def load_model():
13
  return model
14
 
15
  # Define YOLO processing function
16
- def process_image(image, model):
17
  # Preprocess the image
18
  preprocess = transforms.Compose([
19
  transforms.Resize((416, 416)),
@@ -23,17 +23,17 @@ def process_image(image, model):
23
  input_tensor = preprocess(image)
24
  input_batch = input_tensor.unsqueeze(0)
25
 
26
- # Perform inference
27
- with torch.no_grad():
28
- output = model(input_batch)
29
 
30
- # Post-process the output (e.g., draw bounding boxes)
31
- # Replace this with your post-processing code
32
 
33
- # Convert tensor to PIL Image
34
- output_image = transforms.ToPILImage()(output[0].cpu().squeeze())
35
 
36
- return output_image
37
 
38
  # Main Streamlit code
39
  def main():
@@ -50,7 +50,7 @@ def main():
50
  image = Image.open(uploaded_file)
51
  st.image(image, caption='Original Image', use_column_width=True)
52
 
53
- output = model.predict(image)
54
  output_image = Image.fromarray(np.array(output))
55
  st.image(output_image, caption='Processed Image', use_column_width=True)
56
 
 
13
  return model
14
 
15
  # Define YOLO processing function
16
+ def process_image(image):
17
  # Preprocess the image
18
  preprocess = transforms.Compose([
19
  transforms.Resize((416, 416)),
 
23
  input_tensor = preprocess(image)
24
  input_batch = input_tensor.unsqueeze(0)
25
 
26
+ # # Perform inference
27
+ # with torch.no_grad():
28
+ # output = model(input_batch)
29
 
30
+ # # Post-process the output (e.g., draw bounding boxes)
31
+ # # Replace this with your post-processing code
32
 
33
+ # # Convert tensor to PIL Image
34
+ # output_image = transforms.ToPILImage()(output[0].cpu().squeeze())
35
 
36
+ return input_batch
37
 
38
  # Main Streamlit code
39
  def main():
 
50
  image = Image.open(uploaded_file)
51
  st.image(image, caption='Original Image', use_column_width=True)
52
 
53
+ output = process_image(image)
54
  output_image = Image.fromarray(np.array(output))
55
  st.image(output_image, caption='Processed Image', use_column_width=True)
56