File size: 8,707 Bytes
3dba9d4
 
 
 
b4f1e5a
3dba9d4
 
b4f1e5a
3dba9d4
 
 
b4f1e5a
 
 
 
 
3dba9d4
 
 
 
 
 
b4f1e5a
 
 
 
 
 
 
 
 
 
3dba9d4
 
 
 
 
b4f1e5a
 
 
 
 
 
 
 
3dba9d4
b4f1e5a
 
 
 
3dba9d4
b4f1e5a
 
 
3dba9d4
b4f1e5a
 
 
 
 
 
3dba9d4
b4f1e5a
 
 
 
 
 
 
 
 
 
 
3dba9d4
 
 
b4f1e5a
 
 
3dba9d4
b4f1e5a
 
 
 
 
 
3dba9d4
 
 
 
 
 
b4f1e5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dba9d4
 
b4f1e5a
3dba9d4
 
b4f1e5a
3dba9d4
 
 
b4f1e5a
3dba9d4
b4f1e5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dba9d4
 
 
 
b4f1e5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dba9d4
 
b4f1e5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dba9d4
b4f1e5a
 
3dba9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import gradio as gr
import numpy as np
import os
import time
import torch
from scipy.io import wavfile

# Bark imports
from bark import generate_audio, SAMPLE_RATE
from bark.generation import preload_models

# Hugging Face Transformers
from transformers import AutoModelForTextToSpeech, AutoProcessor, AutoTokenizer
from transformers import SpeechT5HifiGan, SpeechT5ForTextToSpeech, SpeechT5Processor

class VoiceSynthesizer:
    def __init__(self):
        # Create working directory
        self.base_dir = os.path.dirname(os.path.abspath(__file__))
        self.working_dir = os.path.join(self.base_dir, "working_files")
        os.makedirs(self.working_dir, exist_ok=True)
        
        # Initialize models dictionary
        self.models = {
            "bark": self._initialize_bark,
            "speecht5": self._initialize_speecht5
        }
        
        # Default model
        self.current_model = "bark"
        
        # Initialize Bark models
        try:
            print("Attempting to load Bark models...")
            preload_models()
            print("Bark models loaded successfully.")
        except Exception as e:
            print(f"Bark model loading error: {e}")
    
    def _initialize_bark(self):
        """Bark model initialization (already done in __init__)"""
        return None
    
    def _initialize_speecht5(self):
        """Initialize SpeechT5 model from Hugging Face"""
        try:
            # Load SpeechT5 model and processor
            model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
            processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
            vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
            
            # Load speaker embeddings
            embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
            speaker_embeddings = torch.tensor(embeddings_dataset[0]["xvector"]).unsqueeze(0)
            
            return {
                "model": model,
                "processor": processor,
                "vocoder": vocoder,
                "speaker_embeddings": speaker_embeddings
            }
        except Exception as e:
            print(f"SpeechT5 model loading error: {e}")
            return None
    
    def set_model(self, model_name):
        """Set the current model for speech synthesis"""
        if model_name not in self.models:
            raise ValueError(f"Model {model_name} not supported")
        self.current_model = model_name
    
    def generate_speech(self, text, model_name=None, voice_preset=None):
        """Generate speech using selected model"""
        if not text or not text.strip():
            return None, "Please enter some text to speak"
        
        # Use specified model or current model
        current_model = model_name or self.current_model
        
        try:
            if current_model == "bark":
                return self._generate_bark_speech(text, voice_preset)
            elif current_model == "speecht5":
                return self._generate_speecht5_speech(text, voice_preset)
            else:
                raise ValueError(f"Unsupported model: {current_model}")
        
        except Exception as e:
            print(f"Speech generation error: {e}")
            import traceback
            traceback.print_exc()
            return None, f"Error generating speech: {str(e)}"
    
    def _generate_bark_speech(self, text, voice_preset=None):
        """Generate speech using Bark"""
        # List of Bark voice presets
        voice_presets = [
            "v2/en_speaker_6",  # Female
            "v2/en_speaker_3",  # Male
            "v2/en_speaker_9",  # Neutral
        ]
        
        # Select voice preset
        history_prompt = voice_preset if voice_preset else voice_presets[0]
        
        # Generate audio
        audio_array = generate_audio(
            text, 
            history_prompt=history_prompt
        )
        
        # Save generated audio
        filename = f"bark_speech_{int(time.time())}.wav"
        filepath = os.path.join(self.working_dir, filename)
        wavfile.write(filepath, SAMPLE_RATE, audio_array)
        
        return filepath, None
    
    def _generate_speecht5_speech(self, text, speaker_id=None):
        """Generate speech using SpeechT5"""
        # Ensure model is initialized
        speecht5_models = self.models["speecht5"]()
        if not speecht5_models:
            return None, "SpeechT5 model not loaded"
        
        model = speecht5_models["model"]
        processor = speecht5_models["processor"]
        vocoder = speecht5_models["vocoder"]
        speaker_embeddings = speecht5_models["speaker_embeddings"]
        
        # Prepare inputs
        inputs = processor(text=text, return_tensors="pt")
        
        # Generate speech
        speech = model.generate_speech(
            inputs["input_ids"], 
            speaker_embeddings
        )
        
        # Convert to numpy array
        audio_array = speech.numpy()
        
        # Save generated audio
        filename = f"speecht5_speech_{int(time.time())}.wav"
        filepath = os.path.join(self.working_dir, filename)
        wavfile.write(filepath, 16000, audio_array)
        
        return filepath, None

def create_interface():
    synthesizer = VoiceSynthesizer()
    
    with gr.Blocks() as interface:
        gr.Markdown("# ๐ŸŽ™๏ธ Advanced Voice Synthesis")
        
        with gr.Row():
            with gr.Column():
                gr.Markdown("## Speech Generation")
                text_input = gr.Textbox(label="Enter Text to Speak")
                
                # Model Selection
                model_dropdown = gr.Dropdown(
                    choices=[
                        "bark (Suno AI)",
                        "speecht5 (Microsoft)"
                    ],
                    label="Select TTS Model",
                    value="bark (Suno AI)"
                )
                
                # Voice Preset Dropdowns
                with gr.Row():
                    bark_preset = gr.Dropdown(
                        choices=[
                            "v2/en_speaker_6 (Female)",
                            "v2/en_speaker_3 (Male)", 
                            "v2/en_speaker_9 (Neutral)"
                        ],
                        label="Bark Voice Preset",
                        visible=True
                    )
                    
                    speecht5_preset = gr.Dropdown(
                        choices=[
                            "Default Speaker"
                        ],
                        label="SpeechT5 Speaker",
                        visible=False
                    )
                
                generate_btn = gr.Button("Generate Speech")
                audio_output = gr.Audio(label="Generated Speech")
                error_output = gr.Textbox(label="Errors", visible=True)
        
        # Dynamic model and preset visibility
        def update_model_visibility(model):
            if "bark" in model.lower():
                return {
                    bark_preset: gr.update(visible=True),
                    speecht5_preset: gr.update(visible=False)
                }
            else:
                return {
                    bark_preset: gr.update(visible=False),
                    speecht5_preset: gr.update(visible=True)
                }
        
        model_dropdown.change(
            fn=update_model_visibility,
            inputs=model_dropdown,
            outputs=[bark_preset, speecht5_preset]
        )
        
        # Speech generation logic
        def generate_speech_wrapper(text, model, bark_preset, speecht5_preset):
            # Map model name
            model_map = {
                "bark (Suno AI)": "bark",
                "speecht5 (Microsoft)": "speecht5"
            }
            
            # Select appropriate preset
            preset = bark_preset if "bark" in model else speecht5_preset
            
            return synthesizer.generate_speech(
                text, 
                model_name=model_map[model], 
                voice_preset=preset
            )
        
        generate_btn.click(
            fn=generate_speech_wrapper,
            inputs=[text_input, model_dropdown, bark_preset, speecht5_preset],
            outputs=[audio_output, error_output]
        )
    
    return interface

if __name__ == "__main__":
    interface = create_interface()
    interface.launch(
        share=False,
        debug=True,
        show_error=True,
        server_name='0.0.0.0',
        server_port=7860
    )