File size: 6,661 Bytes
7e4014b
60e8923
d2b4a56
7e4014b
 
 
 
d2b4a56
60e8923
d2b4a56
dd7f91e
60e8923
2159374
 
60e8923
20c0b83
 
 
 
7e4014b
20c0b83
7e4014b
 
 
dd7f91e
e2b472e
dd7f91e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e4014b
 
 
 
 
 
 
 
 
 
20c0b83
 
7e4014b
 
 
 
 
 
 
 
 
 
 
 
fefc5e6
7e4014b
 
 
 
 
 
20c0b83
 
 
 
 
 
 
00bc7cc
20c0b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd7f91e
7e4014b
dd7f91e
60e8923
 
7e4014b
 
60e8923
2159374
60e8923
 
2159374
60e8923
7e4014b
d2b4a56
 
20c0b83
7e4014b
20c0b83
 
 
 
d2b4a56
 
60e8923
20c0b83
7e4014b
 
 
 
 
 
2159374
7e4014b
 
2159374
 
7e4014b
e2b472e
d2b4a56
 
60e8923
 
dd7f91e
60e8923
d2b4a56
dd7f91e
 
 
d2b4a56
 
7e4014b
 
 
 
 
dd7f91e
 
 
7e4014b
dd7f91e
7e4014b
b05ff4a
7e4014b
 
00bc7cc
 
 
 
dd7f91e
7e4014b
 
 
 
00bc7cc
7e4014b
e2b472e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st
import os
import pandas as pd
from command_center import CommandCenter
from process_documents import process_documents
from embed_documents import create_retriever
import json
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI
import base64

st.set_page_config(layout="wide")
os.environ["OPENAI_API_KEY"] = "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"

get_references = lambda relevant_docs: " ".join(
    [f"[{ref}]" for ref in sorted([ref.metadata["chunk_id"] for ref in relevant_docs])]
)
session_state_2_llm_chat_history = lambda session_state: [
    ss[:2] for ss in session_state if not ss[0].startswith("/")
]
ai_message_format = lambda message, references: (
    f"{message}\n\n---\n\n{references}" if references != "" else message
)
welcome_message = """
Hi I'm Agent Zeta, your AI assistant, dedicated to making your journey through machine learning research papers as insightful and interactive as possible. Whether you're diving into the latest studies or brushing up on foundational papers, I'm here to help navigate, discuss, and analyze content with you.

Here's a quick guide to getting started with me:

| Command | Description |
|---------|-------------|
| `/upload` | Upload and process documents for our conversation. |
| `/index` | View an index of processed documents to easily navigate your research. |
| `/cost` | Calculate the cost of our conversation, ensuring transparency in resource usage. |
| `/download` | Download conversation data for your records or further analysis. |

<br>

Feel free to use these commands to enhance your research experience. Let's embark on this exciting journey of discovery together!

Use `/man` at any point of time to view this guide again.
"""


def process_documents_wrapper(inputs):
    snippets = process_documents(inputs)
    st.session_state.retriever = create_retriever(snippets)
    st.session_state.source_doc_urls = inputs
    st.session_state.index = [snip.metadata["header"] for snip in snippets]
    response = f"Uploaded and processed documents {inputs}"
    st.session_state.messages.append((f"/upload {inputs}", response, ""))
    return response


def index_documents_wrapper(inputs=None):
    response = pd.Series(st.session_state.index, name="references").to_markdown()
    st.session_state.messages.append(("/index", response, ""))
    return response


def calculate_cost_wrapper(inputs=None):
    try:
        stats_df = pd.DataFrame(st.session_state.costing)
        stats_df.loc["total"] = stats_df.sum()
        response = stats_df.to_markdown()
    except ValueError:
        response = "No cost incurred yet"
    st.session_state.messages.append(("/cost", response, ""))
    return response


def download_conversation_wrapper(inputs=None):
    conversation_data = json.dumps(
        {
            "document_urls": (
                st.session_state.source_doc_urls
                if "source_doc_urls" in st.session_state
                else []
            ),
            "document_snippets": (
                st.session_state.index if "index" in st.session_state else []
            ),
            "conversation": [
                {"human": message[0], "ai": message[1], "references": message[2]}
                for message in st.session_state.messages
            ],
            "costing": (
                st.session_state.costing if "costing" in st.session_state else []
            ),
            "total_cost": (
                {
                    k: sum(d[k] for d in st.session_state.costing)
                    for k in st.session_state.costing[0]
                }
                if "costing" in st.session_state and len(st.session_state.costing) > 0
                else {}
            ),
        }
    )
    conversation_data = base64.b64encode(conversation_data.encode()).decode()
    st.session_state.messages.append(("/download", "Conversation data downloaded", ""))
    return f'<a href="data:text/csv;base64,{conversation_data}" download="conversation_data.json">Download Conversation</a>'


def query_llm_wrapper(inputs):
    retriever = st.session_state.retriever
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm=ChatOpenAI(model="gpt-4-0125-preview", temperature=0),
        retriever=retriever,
        return_source_documents=True,
        chain_type="stuff",
    )
    relevant_docs = retriever.get_relevant_documents(inputs)
    with get_openai_callback() as cb:
        result = qa_chain(
            {
                "question": inputs,
                "chat_history": session_state_2_llm_chat_history(
                    st.session_state.messages
                ),
            }
        )
        stats = cb
    result = result["answer"]
    references = get_references(relevant_docs)
    st.session_state.messages.append((inputs, result, references))
    st.session_state.costing.append(
        {
            "prompt tokens": stats.prompt_tokens,
            "completion tokens": stats.completion_tokens,
            "cost": stats.total_cost,
        }
    )
    return result, references


def boot(command_center):
    st.write("# Agent Zeta")
    if "costing" not in st.session_state:
        st.session_state.costing = []
    if "messages" not in st.session_state:
        st.session_state.messages = []
    st.chat_message("ai").write(welcome_message, unsafe_allow_html=True)
    for message in st.session_state.messages:
        st.chat_message("human").write(message[0])
        st.chat_message("ai").write(
            ai_message_format(message[1], message[2]), unsafe_allow_html=True
        )
    if query := st.chat_input():
        st.chat_message("human").write(query)
        response = command_center.execute_command(query)
        if response is None:
            pass
        elif type(response) == tuple:
            result, references = response
            st.chat_message("ai").write(
                ai_message_format(result, references), unsafe_allow_html=True
            )
        else:
            st.chat_message("ai").write(response, unsafe_allow_html=True)


if __name__ == "__main__":
    all_commands = [
        ("/upload", list, process_documents_wrapper),
        ("/index", None, index_documents_wrapper),
        ("/cost", None, calculate_cost_wrapper),
        ("/download", None, download_conversation_wrapper),
        ("/man", None, lambda x: welcome_message),
    ]
    command_center = CommandCenter(
        default_input_type=str,
        default_function=query_llm_wrapper,
        all_commands=all_commands,
    )
    boot(command_center)