Update app.py
Browse files
app.py
CHANGED
@@ -82,6 +82,12 @@ retriever = PineconeHybridSearchRetriever(
|
|
82 |
# llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, max_tokens=1024, max_retries=2)
|
83 |
llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-online", max_tokens=1024, max_retries=2)
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
# Contextualization prompt and retriever
|
86 |
contextualize_q_system_prompt = """Given a chat history and the latest user question \
|
87 |
which might reference context in the chat history, formulate a standalone question \
|
@@ -95,7 +101,7 @@ contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
|
95 |
("human", "{input}")
|
96 |
]
|
97 |
)
|
98 |
-
history_aware_retriever = create_history_aware_retriever(llm,
|
99 |
|
100 |
# QA system prompt and chain
|
101 |
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \
|
|
|
82 |
# llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, max_tokens=1024, max_retries=2)
|
83 |
llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-online", max_tokens=1024, max_retries=2)
|
84 |
|
85 |
+
# Initialize Reranker
|
86 |
+
compressor = FlashrankRerank()
|
87 |
+
compression_retriever = ContextualCompressionRetriever(
|
88 |
+
base_compressor=compressor, base_retriever=retriever
|
89 |
+
)
|
90 |
+
|
91 |
# Contextualization prompt and retriever
|
92 |
contextualize_q_system_prompt = """Given a chat history and the latest user question \
|
93 |
which might reference context in the chat history, formulate a standalone question \
|
|
|
101 |
("human", "{input}")
|
102 |
]
|
103 |
)
|
104 |
+
history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt)
|
105 |
|
106 |
# QA system prompt and chain
|
107 |
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \
|