UAE-NLA-APP / app.py
Ritesh-hf's picture
Update app.py
e635e64 verified
raw
history blame
6.69 kB
import eventlet
eventlet.monkey_patch()
from dotenv import load_dotenv
from flask import Flask, request, render_template
from flask_cors import CORS
from flask_socketio import SocketIO, emit
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers import EnsembleRetriever
from langchain_community.vectorstores import FAISS
from langchain_groq import ChatGroq
from langchain import hub
import pickle
import os
# Load environment variables
load_dotenv(".env")
USER_AGENT = os.getenv("USER_AGENT")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
SECRET_KEY = os.getenv("SECRET_KEY")
SESSION_ID_DEFAULT = "abc123"
# Set environment variables
os.environ['USER_AGENT'] = USER_AGENT
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY
os.environ["TOKENIZERS_PARALLELISM"] = 'true'
# Initialize Flask app and SocketIO with CORS
app = Flask(__name__)
CORS(app)
socketio = SocketIO(app, cors_allowed_origins="*")
app.config['SESSION_COOKIE_SECURE'] = True # Use HTTPS
app.config['SESSION_COOKIE_HTTPONLY'] = True
app.config['SECRET_KEY'] = SECRET_KEY
# Initialize Pinecone index and BM25 encoder
pinecone_index = initialize_pinecone("uae-national-library-and-archives-vectorstore")
bm25 = BM25Encoder().load("./UAE-NLA.json")
old_embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
# Initialize models and retriever
embed_model = HuggingFaceEmbeddings(model_name="Alibaba-NLP/gte-multilingual-base", model_kwargs={"trust_remote_code":True})
retriever = PineconeHybridSearchRetriever(
embeddings=embed_model,
sparse_encoder=bm25,
index=pinecone_index,
top_k=50,
alpha=0.5
)
# Initialize LLM
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, max_tokens=1024, max_retries=2)
# Contextualization prompt and retriever
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is.
"""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}")
]
)
history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)
# QA system prompt and chain
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \
If you don't know the answer, simply state that you don't know. \
Your answer should be in {language} language. \
Provide answers in proper HTML format and keep them concise. \
When responding to queries, follow these guidelines: \
1. Provide Clear Answers: \
- Ensure the response directly addresses the query with accurate and relevant information.\
2. Include Detailed References: \
- Links to Sources: Include URLs to credible sources where users can verify information or explore further. \
- Reference Sites: Mention specific websites or platforms that offer additional information. \
- Downloadable Materials: Provide links to any relevant downloadable resources if applicable. \
3. Formatting for Readability: \
- The answer should be in a proper HTML format with appropriate tags. \
- For arabic language response align the text to right and convert numbers also.
- Double check if the language of answer is correct or not.
- Use bullet points or numbered lists where applicable to present information clearly. \
- Highlight key details using bold or italics. \
- Provide proper and meaningful abbreviations for urls. Do not include naked urls. \
4. Organize Content Logically: \
- Structure the content in a logical order, ensuring easy navigation and understanding for the user. \
{context}
"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}")
]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
# Retrieval and Generative (RAG) Chain
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
# Chat message history storage
store = {}
def clean_temporary_data():
store.clear()
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
# Conversational RAG chain with message history
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
language_message_key="language",
output_messages_key="answer",
)
# Function to handle WebSocket connection
@socketio.on('connect')
def handle_connect():
print(f"Client connected: {request.sid}")
emit('connection_response', {'message': 'Connected successfully.'})
# Function to handle WebSocket disconnection
@socketio.on('disconnect')
def handle_disconnect():
print(f"Client disconnected: {request.sid}")
clean_temporary_data()
# Function to handle WebSocket messages
@socketio.on('message')
def handle_message(data):
question = data.get('question')
language = data.get('language')
if "en" in language:
language = "English"
else:
language = "Arabic"
session_id = data.get('session_id', SESSION_ID_DEFAULT)
try:
for chunk in conversational_rag_chain.stream(
{"input": question, 'language': language},
config={"configurable": {"session_id": session_id}},
):
emit('response', chunk['answer'], room=request.sid)
except Exception as e:
print(f"Error during message handling: {e}")
emit('response', {"error": "An error occurred while processing your request."}, room=request.sid)
# Home route
@app.route("/")
def index_view():
return render_template('chat.html')
# Main function to run the app
if __name__ == '__main__':
socketio.run(app, debug=True)