RinInori's picture
Update app.py
99f1f8b
raw
history blame
4.73 kB
import torch
from peft import PeftModel
import transformers
import gradio as gr
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
BASE_MODEL = "TheBloke/vicuna-7B-1.1-HF"
LORA_WEIGHTS = "RinInori/vicuna_finetuned_6_sentiments" #Fine-tuned Vicuna model for sentiment analysis
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction :
{instruction}
### Response :"""
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Response:")[1].strip()
g = gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2, label="Instruction", placeholder="Classify the text as one of these six different emotions: anger, fear, joy, love, sadness, or surprise.Response in lower-case and one word only."
),
gr.components.Textbox(lines=2, label="Input", placeholder="I am crying"),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.7, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
gr.components.Slider(
minimum=1, maximum=256, step=1, value=64, label="Max tokens"
),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title="Fine-tuned version of Vicuna Model",
description="This model is a fine-tuned version of the Vicuna model for sentiment analysis. https://github.com/hennypurwadi/Vicuna_finetune_sentiment_analysis \
Base model is https://huggingface.co/TheBloke/vicuna-7B-1.1-HF \
It is fine-tuned and trained on a dataset to Classify the text as one of these six different emotions: anger, fear, joy, love, sadness, or surprise.Response in lower-case and one word only. \
The model was trained and tested on a labeled dataset from Kaggle (https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp)",
)
g.queue(concurrency_count=1)
g.launch()