Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from peft import PeftModel
|
3 |
+
import transformers
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
|
6 |
+
from transformers import Trainer
|
7 |
+
|
8 |
+
BASE_MODEL = "TheBloke/stable-vicuna-13B-HF"
|
9 |
+
model = LlamaForCausalLM.from_pretrained(BASE_MODEL, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto")
|
10 |
+
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
11 |
+
tokenizer.pad_token_id = 0
|
12 |
+
tokenizer.padding_side = "left"
|
13 |
+
|
14 |
+
def format_prompt(prompt: str) -> str:
|
15 |
+
return f"### Human: {prompt}\n### Assistant:"
|
16 |
+
|
17 |
+
generation_config = GenerationConfig(
|
18 |
+
max_new_tokens=128,
|
19 |
+
temperature=0.2,
|
20 |
+
repetition_penalty=1.0,
|
21 |
+
)
|
22 |
+
|
23 |
+
def generate_text(prompt: str):
|
24 |
+
formatted_prompt = format_prompt(prompt)
|
25 |
+
|
26 |
+
inputs = tokenizer(
|
27 |
+
formatted_prompt,
|
28 |
+
padding=False,
|
29 |
+
add_special_tokens=False,
|
30 |
+
return_tensors="pt"
|
31 |
+
).to(model.device)
|
32 |
+
|
33 |
+
with torch.inference_mode():
|
34 |
+
tokens = model.generate(**inputs, generation_config=generation_config)
|
35 |
+
|
36 |
+
response = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
37 |
+
assistant_index = response.find("### Assistant:") + len("### Assistant:")
|
38 |
+
return response[assistant_index:].strip()
|
39 |
+
|
40 |
+
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
41 |
+
iface.launch()
|
42 |
+
|