Spaces:
Runtime error
Runtime error
File size: 9,363 Bytes
aca0aa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "B3S1AZp6Kc0R"
},
"source": [
"# Installing\n",
"\n",
"If running on Google Colab you will need a Colab Pro+ subscription.\n",
"\n",
"Change the runtime type to a high memory or connect your local machine to colab, launch a vm perhaps.\n",
"\n",
"First, you will need to obtain the LLaMA weights. \n",
"\n",
"You can sign up for the official weights here: https://huggingface.co/docs/transformers/main/model_doc/llama\n",
"\n",
"There are alternative models available on huggingface however. This guide will assume you do not have access to the official weights.\n",
"\n",
"If you do have access to the official weights skip to: Clone the delta weights"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8_MM5GNkKc0T"
},
"source": [
"## Clone the LLaMA weights"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5TioBc7WKc0U"
},
"outputs": [],
"source": [
"# Setup git lfs\n",
"!git lfs install --skip-smudge --force\n",
"!git lfs env\n",
"!git config filter.lfs.process \"git-lfs filter-process --skip\"\n",
"!git config filter.lfs.smudge \"git-lfs smudge --skip -- %f\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "B5Q-x5yBKc0V"
},
"outputs": [],
"source": [
"# Cloning the 7b parameter model repo\n",
"!git lfs clone https://huggingface.co/decapoda-research/llama-7b-hf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "d0r8HBUyKc0V"
},
"outputs": [],
"source": [
"# Cloning the 13b parameter model repo\n",
"!git lfs clone https://huggingface.co/decapoda-research/llama-13b-hf"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QeDIT-a4Kc0V"
},
"source": [
"## Applying the Vicuna delta weights"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p7BGGUICKc0W"
},
"source": [
"### Install PyTorch with CUDA support\n",
"\n",
"If you already have this installed in your environment, you can skip this step."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IfGE0ALrKc0W"
},
"outputs": [],
"source": [
"# First we need to upgrade setuptools, pip and wheel\n",
"!pip install --upgrade setuptools pip wheel"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RpvAYAD8Kc0W"
},
"outputs": [],
"source": [
"# For CUDA 11.X:\n",
"!pip install nvidia-cuda-runtime-cu11 --index-url https://pypi.ngc.nvidia.com"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1oEi1ggaKc0X"
},
"outputs": [],
"source": [
"# For CUDA 12.x\n",
"!pip install nvidia-cuda-runtime-cu12 --index-url https://pypi.ngc.nvidia.com"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fQYYrn4tKc0X"
},
"outputs": [],
"source": [
"# For PyTorch cu117\n",
"!pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "G7lnb0sYKc0X"
},
"outputs": [],
"source": [
"# For PyTorch cu118\n",
"!pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oBVyjHuWKc0Y"
},
"source": [
"### Running the Fast-Chat apply delta script"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "a4b11Z8lKc0Y"
},
"outputs": [],
"source": [
"# Install FastChat\n",
"!pip install fschat\n",
"\n",
"# Install the latest main branch of huggingface/transformers\n",
"!pip install git+https://github.com/huggingface/transformers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3vJTP1m0Kc0Y"
},
"outputs": [],
"source": [
"import json\n",
"\n",
"def convert_llama_names(model_name: str) -> None:\n",
" \"\"\"Convert LlamaForCausalLM to LlamaForCausalLM and LLaMATokenizer to LlamaTokenizer\"\"\"\n",
" with open(f\"{model_name}/config.json\", \"r\", encoding='utf-8') as f:\n",
" data = f.read()\n",
"\n",
" config = json.loads(data)\n",
" config[\"architectures\"] = [\"LlamaForCausalLM\"]\n",
" with open(f\"{model_name}/config.json\", \"w\", encoding='utf-8') as f:\n",
" json.dump(config, f)\n",
"\n",
"\n",
" with open(f\"{model_name}/tokenizer_config.json\", \"r\", encoding='utf-8') as f:\n",
" data = f.read()\n",
"\n",
" config = json.loads(data)\n",
" config[\"tokenizer_class\"] = \"LlamaTokenizer\"\n",
"\n",
" with open(f\"{model_name}/tokenizer_config.json\", \"w\", encoding='utf-8') as f:\n",
" json.dump(config, f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qyboxxkXKc0Y"
},
"outputs": [],
"source": [
"!git lfs clone https://huggingface.co/lmsys/vicuna-7b-delta-v1.1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9tlvfvapKc0Z"
},
"outputs": [],
"source": [
"# 7b Model\n",
"convert_llama_names(\"llama-7b-hf\")\n",
"!python -m fastchat.model.apply_delta --base llama-7b-hf --target vicuna-7b --delta ./vicuna-7b-delta-v1.1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5VzAdoySKc0Z"
},
"outputs": [],
"source": [
"!git lfs clone https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jRBc7q5RKc0Z"
},
"outputs": [],
"source": [
"# 13b\n",
"convert_llama_names(\"llama-13b-hf\")\n",
"!python -m fastchat.model.apply_delta --base llama-13b-hf --target vicuna-13b --delta ./vicuna-13b-delta-v1.1"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7n8Ug87RKc0Z"
},
"source": [
"# Installing Auto-Vicuna\n",
"\n",
"Note that running this does not work in colab or the notebook, it is for demonstration purposes only."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gIlfwNlEKc0Z"
},
"outputs": [],
"source": [
"!pip install auto-vicuna"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0Z5NlQOXKc0Z"
},
"source": [
"# Running Auto-Vicuna"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "sBJiQP7MKc0a"
},
"outputs": [],
"source": [
"!auto_vicuna --vicuna_weights vicuna-7b"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oqqFeF4zKc0a"
},
"source": [
"You can also create a .env file with \n",
"\n",
"```\n",
"VICUNA_WEIGHTS=vicuna-7b\n",
"```\n",
"\n",
"To avoid passing the weights as an arugment."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jiW98C1KKc0a"
},
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "VE8DhmUrKc0a"
},
"source": [
"## Known Issues\n",
"\n",
"If your model keeps talking about random news articles and suchs the `special_tokens_map.json` and `tokenizer_config.json` need to have to stop tokens populated most likely, you can find them in the repo's root dir."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"colab": {
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 0
} |