|
import torch |
|
import torch.nn as nn |
|
import torch.nn.init as init |
|
import torch.nn.functional as F |
|
|
|
|
|
def initialize_weights(net_l, scale=1): |
|
if not isinstance(net_l, list): |
|
net_l = [net_l] |
|
for net in net_l: |
|
for m in net.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
init.kaiming_normal_(m.weight, a=0, mode='fan_in') |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
init.kaiming_normal_(m.weight, a=0, mode='fan_in') |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
init.constant_(m.weight, 1) |
|
init.constant_(m.bias.data, 0.0) |
|
|
|
|
|
def initialize_weights_xavier(net_l, scale=1): |
|
if not isinstance(net_l, list): |
|
net_l = [net_l] |
|
for net in net_l: |
|
for m in net.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
init.xavier_normal_(m.weight) |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
init.xavier_normal_(m.weight) |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
init.constant_(m.weight, 1) |
|
init.constant_(m.bias.data, 0.0) |
|
|
|
|
|
def make_layer(block, n_layers): |
|
layers = [] |
|
for _ in range(n_layers): |
|
layers.append(block()) |
|
return nn.Sequential(*layers) |
|
|
|
|
|
class ResidualBlock_noBN(nn.Module): |
|
'''Residual block w/o BN |
|
---Conv-ReLU-Conv-+- |
|
|________________| |
|
''' |
|
|
|
def __init__(self, nf=64): |
|
super(ResidualBlock_noBN, self).__init__() |
|
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
|
|
|
|
initialize_weights([self.conv1, self.conv2], 0.1) |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = F.relu(self.conv1(x), inplace=True) |
|
out = self.conv2(out) |
|
return identity + out |
|
|
|
|
|
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros'): |
|
"""Warp an image or feature map with optical flow |
|
Args: |
|
x (Tensor): size (N, C, H, W) |
|
flow (Tensor): size (N, H, W, 2), normal value |
|
interp_mode (str): 'nearest' or 'bilinear' |
|
padding_mode (str): 'zeros' or 'border' or 'reflection' |
|
|
|
Returns: |
|
Tensor: warped image or feature map |
|
""" |
|
assert x.size()[-2:] == flow.size()[1:3] |
|
B, C, H, W = x.size() |
|
|
|
grid_y, grid_x = torch.meshgrid(torch.arange(0, H), torch.arange(0, W)) |
|
grid = torch.stack((grid_x, grid_y), 2).float() |
|
grid.requires_grad = False |
|
grid = grid.type_as(x) |
|
vgrid = grid + flow |
|
|
|
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(W - 1, 1) - 1.0 |
|
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(H - 1, 1) - 1.0 |
|
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3) |
|
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode) |
|
return output |
|
|