Ricoooo's picture
'folder'
5d21dd2
import math
import torch
import torch.nn as nn
def dwt_init3d(x):
x01 = x[:, :, :, 0::2, :] / 2
x02 = x[:, :, :, 1::2, :] / 2
x1 = x01[:, :, :, :, 0::2]
x2 = x02[:, :, :, :, 0::2]
x3 = x01[:, :, :, :, 1::2]
x4 = x02[:, :, :, :, 1::2]
x_LL = x1 + x2 + x3 + x4
x_HL = -x1 - x2 + x3 + x4
x_LH = -x1 + x2 - x3 + x4
x_HH = x1 - x2 - x3 + x4
return torch.cat((x_LL, x_HL, x_LH, x_HH), 1)
def dwt_init(x):
x01 = x[:, :, 0::2, :] / 2
x02 = x[:, :, 1::2, :] / 2
x1 = x01[:, :, :, 0::2]
x2 = x02[:, :, :, 0::2]
x3 = x01[:, :, :, 1::2]
x4 = x02[:, :, :, 1::2]
x_LL = x1 + x2 + x3 + x4
x_HL = -x1 - x2 + x3 + x4
x_LH = -x1 + x2 - x3 + x4
x_HH = x1 - x2 - x3 + x4
return torch.cat((x_LL, x_HL, x_LH, x_HH), 1)
def iwt_init(x):
r = 2
in_batch, in_channel, in_height, in_width = x.size()
#print([in_batch, in_channel, in_height, in_width])
out_batch, out_channel, out_height, out_width = in_batch, int(
in_channel / (r ** 2)), r * in_height, r * in_width
x1 = x[:, 0:out_channel, :, :] / 2
x2 = x[:, out_channel:out_channel * 2, :, :] / 2
x3 = x[:, out_channel * 2:out_channel * 3, :, :] / 2
x4 = x[:, out_channel * 3:out_channel * 4, :, :] / 2
h = torch.zeros([out_batch, out_channel, out_height, out_width]).float().cuda()
h[:, :, 0::2, 0::2] = x1 - x2 - x3 + x4
h[:, :, 1::2, 0::2] = x1 - x2 + x3 - x4
h[:, :, 0::2, 1::2] = x1 + x2 - x3 - x4
h[:, :, 1::2, 1::2] = x1 + x2 + x3 + x4
return h
class DWT(nn.Module):
def __init__(self):
super(DWT, self).__init__()
self.requires_grad = False
def forward(self, x):
return dwt_init(x)
class DWT3d(nn.Module):
def __init__(self):
super(DWT3d, self).__init__()
self.requires_grad = False
def forward(self, x):
return dwt_init3d(x)
class IWT(nn.Module):
def __init__(self):
super(IWT, self).__init__()
self.requires_grad = False
def forward(self, x):
return iwt_init(x)