|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import models.modules.module_util as mutil |
|
from basicsr.archs.arch_util import flow_warp, ResidualBlockNoBN |
|
from models.modules.module_util import initialize_weights_xavier |
|
|
|
class DenseBlock(nn.Module): |
|
def __init__(self, channel_in, channel_out, init='xavier', gc=32, bias=True): |
|
super(DenseBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(channel_in, gc, 3, 1, 1, bias=bias) |
|
self.conv2 = nn.Conv2d(channel_in + gc, gc, 3, 1, 1, bias=bias) |
|
self.conv3 = nn.Conv2d(channel_in + 2 * gc, gc, 3, 1, 1, bias=bias) |
|
self.conv4 = nn.Conv2d(channel_in + 3 * gc, gc, 3, 1, 1, bias=bias) |
|
self.conv5 = nn.Conv2d(channel_in + 4 * gc, channel_out, 3, 1, 1, bias=bias) |
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
self.H = None |
|
|
|
if init == 'xavier': |
|
mutil.initialize_weights_xavier([self.conv1, self.conv2, self.conv3, self.conv4], 0.1) |
|
else: |
|
mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4], 0.1) |
|
mutil.initialize_weights(self.conv5, 0) |
|
|
|
def forward(self, x): |
|
if isinstance(x, list): |
|
x = x[0] |
|
x1 = self.lrelu(self.conv1(x)) |
|
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) |
|
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) |
|
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) |
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) |
|
|
|
return x5 |
|
|
|
class DenseBlock_v2(nn.Module): |
|
def __init__(self, channel_in, channel_out, groups, init='xavier', gc=32, bias=True): |
|
super(DenseBlock_v2, self).__init__() |
|
self.conv1 = nn.Conv2d(channel_in, gc, 3, 1, 1, bias=bias) |
|
self.conv2 = nn.Conv2d(channel_in + gc, gc, 3, 1, 1, bias=bias) |
|
self.conv3 = nn.Conv2d(channel_in + 2 * gc, gc, 3, 1, 1, bias=bias) |
|
self.conv4 = nn.Conv2d(channel_in + 3 * gc, gc, 3, 1, 1, bias=bias) |
|
self.conv5 = nn.Conv2d(channel_in + 4 * gc, channel_out, 3, 1, 1, bias=bias) |
|
self.conv_final = nn.Conv2d(channel_out*groups, channel_out, 3, 1, 1, bias=bias) |
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
|
|
if init == 'xavier': |
|
mutil.initialize_weights_xavier([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) |
|
else: |
|
mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) |
|
mutil.initialize_weights(self.conv_final, 0) |
|
|
|
def forward(self, x): |
|
res = [] |
|
for xi in x: |
|
x1 = self.lrelu(self.conv1(xi)) |
|
x2 = self.lrelu(self.conv2(torch.cat((xi, x1), 1))) |
|
x3 = self.lrelu(self.conv3(torch.cat((xi, x1, x2), 1))) |
|
x4 = self.lrelu(self.conv4(torch.cat((xi, x1, x2, x3), 1))) |
|
x5 = self.lrelu(self.conv5(torch.cat((xi, x1, x2, x3, x4), 1))) |
|
res.append(x5) |
|
res = torch.cat(res, dim=1) |
|
res = self.conv_final(res) |
|
|
|
return res |
|
|
|
def subnet(net_structure, init='xavier'): |
|
def constructor(channel_in, channel_out, groups=None): |
|
if net_structure == 'DBNet': |
|
if init == 'xavier': |
|
return DenseBlock(channel_in, channel_out, init) |
|
elif init == 'xavier_v2': |
|
return DenseBlock_v2(channel_in, channel_out, groups, 'xavier') |
|
else: |
|
return DenseBlock(channel_in, channel_out) |
|
else: |
|
return None |
|
|
|
return constructor |
|
|