File size: 8,854 Bytes
5d21dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import sys
import time
import math
from datetime import datetime
import random
import logging
from collections import OrderedDict
import numpy as np
import cv2
import torch
from torchvision.utils import make_grid
from shutil import get_terminal_size

import yaml
try:
    from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
    from yaml import Loader, Dumper


def OrderedYaml():
    '''yaml orderedDict support'''
    _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG

    def dict_representer(dumper, data):
        return dumper.represent_dict(data.items())

    def dict_constructor(loader, node):
        return OrderedDict(loader.construct_pairs(node))

    Dumper.add_representer(OrderedDict, dict_representer)
    Loader.add_constructor(_mapping_tag, dict_constructor)
    return Loader, Dumper


####################
# miscellaneous
####################


def get_timestamp():
    return datetime.now().strftime('%y%m%d-%H%M%S')


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def mkdirs(paths):
    if isinstance(paths, str):
        mkdir(paths)
    else:
        for path in paths:
            mkdir(path)


def mkdir_and_rename(path):
#     print(path)
#     exit(0)
    if os.path.exists(path):
        new_name = path + '_archived_' + get_timestamp()
        print('Path already exists. Rename it to [{:s}]'.format(new_name))
        logger = logging.getLogger('base')
        logger.info('Path already exists. Rename it to [{:s}]'.format(new_name))
#         path = new_name
        os.rename(path, new_name)
    os.makedirs(path)
#     return path


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
    '''set up logger'''
    lg = logging.getLogger(logger_name)
    formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
                                  datefmt='%y-%m-%d %H:%M:%S')
    lg.setLevel(level)
    if tofile:
        log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp()))
        fh = logging.FileHandler(log_file, mode='w')
        fh.setFormatter(formatter)
        lg.addHandler(fh)
    if screen:
        sh = logging.StreamHandler()
        sh.setFormatter(formatter)
        lg.addHandler(sh)


####################
# image convert
####################


def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
    '''
    Converts a torch Tensor into an image Numpy array
    Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
    Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
    '''
    tensor = tensor.squeeze().float().cpu().clamp_(*min_max)  # clamp
    tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])  # to range [0,1]
    n_dim = tensor.dim()
    if n_dim == 4:
        n_img = len(tensor)
        img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
    elif n_dim == 3:
        img_np = tensor.numpy()
        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
    elif n_dim == 2:
        img_np = tensor.numpy()
    else:
        raise TypeError(
            'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
    if out_type == np.uint8:
        img_np = (img_np * 255.0).round()
        # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
    return img_np.astype(out_type)


def save_img(img, img_path, mode='RGB'):
    cv2.imwrite(img_path, img)


####################
# metric
####################


def calculate_psnr(img1, img2):
    # img1 and img2 have range [0, 255]
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    mse = np.mean((img1 - img2)**2)
    if mse == 0:
        return float('inf')
    return 20 * math.log10(255.0 / math.sqrt(mse))


def ssim(img1, img2):
    C1 = (0.01 * 255)**2
    C2 = (0.03 * 255)**2

    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    kernel = cv2.getGaussianKernel(11, 1.5)
    window = np.outer(kernel, kernel.transpose())

    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
    mu1_sq = mu1**2
    mu2_sq = mu2**2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
    sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
    sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                                                            (sigma1_sq + sigma2_sq + C2))
    return ssim_map.mean()


def calculate_ssim(img1, img2):
    '''calculate SSIM
    the same outputs as MATLAB's
    img1, img2: [0, 255]
    '''
    if not img1.shape == img2.shape:
        raise ValueError('Input images must have the same dimensions.')
    if img1.ndim == 2:
        return ssim(img1, img2)
    elif img1.ndim == 3:
        if img1.shape[2] == 3:
            ssims = []
            for i in range(3):
                ssims.append(ssim(img1, img2))
            return np.array(ssims).mean()
        elif img1.shape[2] == 1:
            return ssim(np.squeeze(img1), np.squeeze(img2))
    else:
        raise ValueError('Wrong input image dimensions.')


class ProgressBar(object):
    '''A progress bar which can print the progress
    modified from https://github.com/hellock/cvbase/blob/master/cvbase/progress.py
    '''

    def __init__(self, task_num=0, bar_width=50, start=True):
        self.task_num = task_num
        max_bar_width = self._get_max_bar_width()
        self.bar_width = (bar_width if bar_width <= max_bar_width else max_bar_width)
        self.completed = 0
        if start:
            self.start()

    def _get_max_bar_width(self):
        terminal_width, _ = get_terminal_size()
        max_bar_width = min(int(terminal_width * 0.6), terminal_width - 50)
        if max_bar_width < 10:
            print('terminal width is too small ({}), please consider widen the terminal for better '
                  'progressbar visualization'.format(terminal_width))
            max_bar_width = 10
        return max_bar_width

    def start(self):
        if self.task_num > 0:
            sys.stdout.write('[{}] 0/{}, elapsed: 0s, ETA:\n{}\n'.format(
                ' ' * self.bar_width, self.task_num, 'Start...'))
        else:
            sys.stdout.write('completed: 0, elapsed: 0s')
        sys.stdout.flush()
        self.start_time = time.time()

    def update(self, msg='In progress...'):
        self.completed += 1
        elapsed = time.time() - self.start_time
        fps = self.completed / elapsed
        if self.task_num > 0:
            percentage = self.completed / float(self.task_num)
            eta = int(elapsed * (1 - percentage) / percentage + 0.5)
            mark_width = int(self.bar_width * percentage)
            bar_chars = '>' * mark_width + '-' * (self.bar_width - mark_width)
            sys.stdout.write('\033[2F')  # cursor up 2 lines
            sys.stdout.write('\033[J')  # clean the output (remove extra chars since last display)
            sys.stdout.write('[{}] {}/{}, {:.1f} task/s, elapsed: {}s, ETA: {:5}s\n{}\n'.format(
                bar_chars, self.completed, self.task_num, fps, int(elapsed + 0.5), eta, msg))
        else:
            sys.stdout.write('completed: {}, elapsed: {}s, {:.1f} tasks/s'.format(
                self.completed, int(elapsed + 0.5), fps))
        sys.stdout.flush()

def bitWise_accurary(msg_fake, message):
    #
    if msg_fake == None:
        return None, None
    else:
        DecodedMsg_rounded = msg_fake.detach().cpu().numpy().round().clip(0, 1)
        
        diff = DecodedMsg_rounded - message.detach().cpu().numpy().round().clip(0, 1)
        count = np.sum(np.abs(diff))
        b, l = msg_fake.shape
        
        accuracy = (1 - count / (b * l)) 
        BitWise_AvgErr = count / (b * l)
        
        return accuracy * 100, BitWise_AvgErr

def decoded_message_error_rate(message, decoded_message):
    message = message.view(message.shape[0], -1).squeeze()
    length = message.shape[0]
    message = message.gt(0)
    decoded_message = decoded_message.gt(0)
    error_rate = float(sum(message != decoded_message)) / length
    return error_rate

def decoded_message_error_rate_batch(messages, decoded_messages):
    error_rate = 0.0
    batch_size = len(messages)
    for i in range(batch_size):
        error_rate += decoded_message_error_rate(messages[i], decoded_messages[i])
    error_rate /= batch_size
    return error_rate