File size: 6,317 Bytes
5d21dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Standard libraries
import itertools
import numpy as np
# PyTorch
import torch
import torch.nn as nn
# Local
from . import JPEG_utils as utils


class y_dequantize(nn.Module):
    """ Dequantize Y channel
    Inputs:
        image(tensor): batch x height x width
        factor(float): compression factor
    Outputs:
        image(tensor): batch x height x width
    """
    def __init__(self, factor=1):
        super(y_dequantize, self).__init__()
        self.y_table = utils.y_table
        self.factor = factor

    def forward(self, image):
        return image * (self.y_table * self.factor)


class c_dequantize(nn.Module):
    """ Dequantize CbCr channel
    Inputs:
        image(tensor): batch x height x width
        factor(float): compression factor
    Outputs:
        image(tensor): batch x height x width
    """
    def __init__(self, factor=1):
        super(c_dequantize, self).__init__()
        self.factor = factor
        self.c_table = utils.c_table

    def forward(self, image):
        return image * (self.c_table * self.factor)


class idct_8x8(nn.Module):
    """ Inverse discrete Cosine Transformation
    Input:
        dcp(tensor): batch x height x width
    Output:
        image(tensor): batch x height x width
    """
    def __init__(self):
        super(idct_8x8, self).__init__()
        alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
        self.alpha = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha)).float())
        tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
        for x, y, u, v in itertools.product(range(8), repeat=4):
            tensor[x, y, u, v] = np.cos((2 * u + 1) * x * np.pi / 16) * np.cos(
                (2 * v + 1) * y * np.pi / 16)
        self.tensor = nn.Parameter(torch.from_numpy(tensor).float())

    def forward(self, image):
        
        image = image * self.alpha
        result = 0.25 * torch.tensordot(image, self.tensor, dims=2) + 128
        result.view(image.shape)
        return result


class block_merging(nn.Module):
    """ Merge pathces into image
    Inputs:
        patches(tensor) batch x height*width/64, height x width
        height(int)
        width(int)
    Output:
        image(tensor): batch x height x width
    """
    def __init__(self):
        super(block_merging, self).__init__()
        
    def forward(self, patches, height, width):
        k = 8
        batch_size = patches.shape[0]
        # print(patches.shape) # (1,1024,8,8) 
        image_reshaped = patches.view(batch_size, height//k, width//k, k, k)
        image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
        return image_transposed.contiguous().view(batch_size, height, width)


class chroma_upsampling(nn.Module):
    """ Upsample chroma layers
    Input: 
        y(tensor): y channel image
        cb(tensor): cb channel
        cr(tensor): cr channel
    Ouput:
        image(tensor): batch x height x width x 3
    """
    def __init__(self):
        super(chroma_upsampling, self).__init__()
    
    def forward(self, y, cb, cr):
        def repeat(x, k=2):
            height, width = x.shape[1:3]
            x = x.unsqueeze(-1)
            x = x.repeat(1, 1, k, k)
            x = x.view(-1, height * k, width * k)
            return x

        cb = repeat(cb)
        cr = repeat(cr)
        
        return torch.cat([y.unsqueeze(3), cb.unsqueeze(3), cr.unsqueeze(3)], dim=3)


class ycbcr_to_rgb_jpeg(nn.Module):
    """ Converts YCbCr image to RGB JPEG
    Input:
        image(tensor): batch x height x width x 3
    Outpput:
        result(tensor): batch x 3 x height x width
    """
    def __init__(self):
        super(ycbcr_to_rgb_jpeg, self).__init__()

        matrix = np.array(
            [[1., 0., 1.402], [1, -0.344136, -0.714136], [1, 1.772, 0]],
            dtype=np.float32).T
        self.shift = nn.Parameter(torch.tensor([0, -128., -128.]))
        self.matrix = nn.Parameter(torch.from_numpy(matrix))

    def forward(self, image):
        result = torch.tensordot(image + self.shift, self.matrix, dims=1)
        #result = torch.from_numpy(result)
        result.view(image.shape)
        return result.permute(0, 3, 1, 2)


class decompress_jpeg(nn.Module):
    """ Full JPEG decompression algortihm
    Input:
        compressed(dict(tensor)): batch x h*w/64 x 8 x 8
        rounding(function): rounding function to use
        factor(float): Compression factor
    Ouput:
        image(tensor): batch x 3 x height x width
    """
    # def __init__(self, height, width, rounding=torch.round, factor=1):
    def __init__(self, rounding=torch.round, factor=1):
        super(decompress_jpeg, self).__init__()
        self.c_dequantize = c_dequantize(factor=factor)
        self.y_dequantize = y_dequantize(factor=factor)
        self.idct = idct_8x8()
        self.merging = block_merging()
        # comment this line if no subsampling
        self.chroma = chroma_upsampling()
        self.colors = ycbcr_to_rgb_jpeg()
        
        # self.height, self.width = height, width
        
    def forward(self, y, cb, cr, height, width):
        components = {'y': y, 'cb': cb, 'cr': cr}
        # height = y.shape[0]
        # width = y.shape[1]
        self.height = height
        self.width = width
        for k in components.keys():
            if k in ('cb', 'cr'):
                comp = self.c_dequantize(components[k])
                # comment this line if no subsampling
                height, width = int(self.height/2), int(self.width/2)
                # height, width = int(self.height), int(self.width)
                
            else:
                comp = self.y_dequantize(components[k]) 
                # comment this line if no subsampling 
                height, width = self.height, self.width 
            comp = self.idct(comp) 
            components[k] = self.merging(comp, height, width) 
            # 
        # comment this line if no subsampling 
        image = self.chroma(components['y'], components['cb'], components['cr']) 
        # image = torch.cat([components['y'].unsqueeze(3), components['cb'].unsqueeze(3), components['cr'].unsqueeze(3)], dim=3) 
        image = self.colors(image)

        image = torch.min(255*torch.ones_like(image),
                          torch.max(torch.zeros_like(image), image))
        return image/255