File size: 2,048 Bytes
5d21dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#### general settings

name: train_ibsn_bit_64
use_tb_logger: true
model: MIMO-VRN-h
distortion: sr
scale: 4
gpu_ids: [0, 1]
gop: 1
num_image: 1

addnoise: False
noisesigma: 0.05

addjpeg: False
jpegfactor: 90
addpossion: False
sdinpaint: False
controlnetinpaint: False
sdxl: False
repaint: False
sdprompt: False
sdxlprompt: False
faceswap: False

hide: True
bithide: True
degrade_shuffle: True
prompt: True
prompt_len: 3
message_length: 64

losstype: mse

mode: bit

#### datasets

datasets:
  train:
    name: Vimeo90K
    mode: train
    interval_list: [1]
    random_reverse: false
    border_mode: false
    data_path: /userhome/train2017
    txt_path: /userhome/train2017.txt
    dataroot_LQ: ~/vimeo90k/vimeo90k_train_LR7frames.lmdb
    cache_keys: Vimeo90K_train_keys.pkl
    num_image: 1

    N_frames: 7
    use_shuffle: true
    n_workers: 24 
    batch_size: 4
    GT_size: 400
    LQ_size: 36
    use_flip: true
    use_rot: true
    color: RGB

  val:
    num_image: 1
    name: Vid4
    mode: test
    data_path: ../dataset/valAGE-Set
    txt_path: ../dataset/sep_vallist.txt

    N_frames: 1
    padding: 'new_info'
    pred_interval: -1


#### network structures

network_G:
  which_model_G:
      subnet_type: DBNet
  in_nc: 12
  out_nc: 12
  block_num: [6, 6]
  scale: 2
  init: xavier_group
  block_num_rbm: 8
  block_num_trans: 4

#### path

path:
  pretrain_model_G:
  models: ckp/base
  strict_load: true
  resume_state: ~


#### training settings: learning rate scheme, loss

train:

  lr_G: !!float 1e-4
  beta1: 0.9
  beta2: 0.5
  niter: 250000
  warmup_iter: -1  # no warm up

  lr_scheme: MultiStepLR
  lr_steps: [30000, 100000, 250000] 
  lr_gamma: 0.5

  pixel_criterion_forw: l2
  pixel_criterion_back: l1

  manual_seed: 10

  val_freq: !!float 500 #!!float 5e3

  lambda_fit_forw: 1.
  lambda_rec_back: 1
  lambda_center: 0
  lambda_msg: !!float 100 # 500000

  progressive: False

  weight_decay_G: !!float 1e-12
  gradient_clipping: 10


#### logger

logger:
  print_freq: 100
  save_checkpoint_freq: !!float 500