File size: 21,520 Bytes
5d21dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from .module_util import initialize_weights_xavier
from torch.nn import init
from .common import DWT,IWT
import cv2
from basicsr.archs.arch_util import flow_warp
from models.modules.Subnet_constructor import subnet
import numpy as np

from pdb import set_trace as stx
import numbers

from einops import rearrange
from models.bitnetwork.Encoder_U import DW_Encoder
from models.bitnetwork.Decoder_U import DW_Decoder


## Layer Norm
def to_3d(x):
    return rearrange(x, 'b c h w -> b (h w) c')


def to_4d(x, h, w):
    return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)


class BiasFree_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(BiasFree_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return x / torch.sqrt(sigma + 1e-5) * self.weight


class WithBias_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(WithBias_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        mu = x.mean(-1, keepdim=True)
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight + self.bias


class LayerNorm(nn.Module):
    def __init__(self, dim, LayerNorm_type):
        super(LayerNorm, self).__init__()
        if LayerNorm_type == 'BiasFree':
            self.body = BiasFree_LayerNorm(dim)
        else:
            self.body = WithBias_LayerNorm(dim)

    def forward(self, x):
        h, w = x.shape[-2:]
        return to_4d(self.body(to_3d(x)), h, w)


##########################################################################
## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):
    def __init__(self, dim, ffn_expansion_factor, bias):
        super(FeedForward, self).__init__()

        hidden_features = int(dim * ffn_expansion_factor)

        self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)

        self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,
                                groups=hidden_features * 2, bias=bias)

        self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)

    def forward(self, x):
        x = self.project_in(x)
        x1, x2 = self.dwconv(x).chunk(2, dim=1)
        x = F.gelu(x1) * x2
        x = self.project_out(x)
        return x


##########################################################################
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):
    def __init__(self, dim, num_heads, bias):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

        self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
        self.qkv_dwconv = nn.Conv2d(dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3, bias=bias)
        self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)

    def forward(self, x):
        b, c, h, w = x.shape

        qkv = self.qkv_dwconv(self.qkv(x))
        q, k, v = qkv.chunk(3, dim=1)

        q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)

        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)

        out = (attn @ v)

        out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)

        out = self.project_out(out)
        return out


##########################################################################
class TransformerBlock(nn.Module):
    def __init__(self, dim, num_heads=4, ffn_expansion_factor=4, bias=False, LayerNorm_type="withbias"):
        super(TransformerBlock, self).__init__()

        self.norm1 = LayerNorm(dim, LayerNorm_type)
        self.attn = Attention(dim, num_heads, bias)
        self.norm2 = LayerNorm(dim, LayerNorm_type)
        self.ffn = FeedForward(dim, ffn_expansion_factor, bias)

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.ffn(self.norm2(x))

        return x

dwt=DWT()
iwt=IWT()

class LayerNormFunction(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, weight, bias, eps):
        ctx.eps = eps
        N, C, H, W = x.size()
        mu = x.mean(1, keepdim=True)
        var = (x - mu).pow(2).mean(1, keepdim=True)
        y = (x - mu) / (var + eps).sqrt()
        ctx.save_for_backward(y, var, weight)
        y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
        return y

    @staticmethod
    def backward(ctx, grad_output):
        eps = ctx.eps

        N, C, H, W = grad_output.size()
        y, var, weight = ctx.saved_variables
        g = grad_output * weight.view(1, C, 1, 1)
        mean_g = g.mean(dim=1, keepdim=True)

        mean_gy = (g * y).mean(dim=1, keepdim=True)
        gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
        return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
            dim=0), None

class LayerNorm2d(nn.Module):

    def __init__(self, channels, eps=1e-6):
        super(LayerNorm2d, self).__init__()
        self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
        self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
        self.eps = eps

    def forward(self, x):
        return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)

class SimpleGate(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        return x1 * x2

class NAFBlock(nn.Module):
    def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
        super().__init__()
        dw_channel = c * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True)
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        
        # Simplified Channel Attention
        self.sca = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
        self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()

        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):
        x = inp

        x = self.norm1(x)

        x = self.conv1(x)
        x = self.conv2(x)
        x = self.sg(x)
        x = x * self.sca(x)
        x = self.conv3(x)

        x = self.dropout1(x)

        y = inp + x * self.beta

        x = self.conv4(self.norm2(y))
        x = self.sg(x)
        x = self.conv5(x)

        x = self.dropout2(x)

        return y + x * self.gamma

def thops_mean(tensor, dim=None, keepdim=False):
    if dim is None:
        # mean all dim
        return torch.mean(tensor)
    else:
        if isinstance(dim, int):
            dim = [dim]
        dim = sorted(dim)
        for d in dim:
            tensor = tensor.mean(dim=d, keepdim=True)
        if not keepdim:
            for i, d in enumerate(dim):
                tensor.squeeze_(d-i)
        return tensor


class ResidualBlockNoBN(nn.Module):
    def __init__(self, nf=64, model='MIMO-VRN'):
        super(ResidualBlockNoBN, self).__init__()
        self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        # honestly, there's no significant difference between ReLU and leaky ReLU in terms of performance here
        # but this is how we trained the model in the first place and what we reported in the paper
        if model == 'LSTM-VRN':
            self.relu = nn.ReLU(inplace=True)
        elif model == 'MIMO-VRN':
            self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

        # initialization
        initialize_weights_xavier([self.conv1, self.conv2], 0.1)

    def forward(self, x):
        identity = x
        out = self.relu(self.conv1(x))
        out = self.conv2(out)
        return identity + out


class InvBlock(nn.Module):
    def __init__(self, subnet_constructor, subnet_constructor_v2, channel_num_ho, channel_num_hi, groups, clamp=1.):
        super(InvBlock, self).__init__()
        self.split_len1 = channel_num_ho  # channel_split_num
        self.split_len2 = channel_num_hi  # channel_num - channel_split_num
        self.clamp = clamp

        self.F = subnet_constructor_v2(self.split_len2, self.split_len1, groups=groups)
        self.NF = NAFBlock(self.split_len2)
        if groups == 1: 
            self.G = subnet_constructor(self.split_len1, self.split_len2, groups=groups)
            self.NG = NAFBlock(self.split_len1)
            self.H = subnet_constructor(self.split_len1, self.split_len2, groups=groups)
            self.NH = NAFBlock(self.split_len1)
        else:
            self.G = subnet_constructor(self.split_len1, self.split_len2)
            self.NG = NAFBlock(self.split_len1)
            self.H = subnet_constructor(self.split_len1, self.split_len2)
            self.NH = NAFBlock(self.split_len1)

    def forward(self, x1, x2, rev=False):
        if not rev:
            y1 = x1 + self.NF(self.F(x2))
            self.s = self.clamp * (torch.sigmoid(self.NH(self.H(y1))) * 2 - 1)
            y2 = [x2i.mul(torch.exp(self.s)) + self.NG(self.G(y1)) for x2i in x2]
        else:
            self.s = self.clamp * (torch.sigmoid(self.NH(self.H(x1))) * 2 - 1)
            y2 = [(x2i - self.NG(self.G(x1))).div(torch.exp(self.s)) for x2i in x2]
            y1 = x1 - self.NF(self.F(y2))

        return y1, y2  # torch.cat((y1, y2), 1)

    def jacobian(self, x, rev=False):
        if not rev:
            jac = torch.sum(self.s)
        else:
            jac = -torch.sum(self.s)

        return jac / x.shape[0]

class InvNN(nn.Module):
    def __init__(self, channel_in_ho=3, channel_in_hi=3, subnet_constructor=None, subnet_constructor_v2=None, block_num=[], down_num=2, groups=None):
        super(InvNN, self).__init__()
        operations = []

        current_channel_ho = channel_in_ho
        current_channel_hi = channel_in_hi
        for i in range(down_num):
            for j in range(block_num[i]):
                b = InvBlock(subnet_constructor, subnet_constructor_v2, current_channel_ho, current_channel_hi, groups=groups)
                operations.append(b)

        self.operations = nn.ModuleList(operations)

    def forward(self, x, x_h, rev=False, cal_jacobian=False):
        # 		out = x
        jacobian = 0

        if not rev:
            for op in self.operations:
                x, x_h = op.forward(x, x_h, rev)
                if cal_jacobian:
                    jacobian += op.jacobian(x, rev)
        else:
            for op in reversed(self.operations):
                x, x_h = op.forward(x, x_h, rev)
                if cal_jacobian:
                    jacobian += op.jacobian(x, rev)

        if cal_jacobian:
            return x, x_h, jacobian
        else:
            return x, x_h

class PredictiveModuleMIMO(nn.Module):
    def __init__(self, channel_in, nf, block_num_rbm=8, block_num_trans=4):
        super(PredictiveModuleMIMO, self).__init__()
        self.conv_in = nn.Conv2d(channel_in, nf, 3, 1, 1, bias=True)
        res_block = []
        trans_block = []
        for i in range(block_num_rbm):
            res_block.append(ResidualBlockNoBN(nf))
        for j in range(block_num_trans):
            trans_block.append(TransformerBlock(nf))

        self.res_block = nn.Sequential(*res_block)
        self.transformer_block = nn.Sequential(*trans_block)

    def forward(self, x):
        x = self.conv_in(x)
        x = self.res_block(x)
        res = self.transformer_block(x) + x

        return res

class ConvRelu(nn.Module):
    def __init__(self, channels_in, channels_out, stride=1, init_zero=False):
        super(ConvRelu, self).__init__()
        self.init_zero = init_zero
        if self.init_zero:
            self.layers = nn.Conv2d(channels_in, channels_out, 3, stride, padding=1)

        else:
            self.layers = nn.Sequential(
                nn.Conv2d(channels_in, channels_out, 3, stride, padding=1),
                nn.LeakyReLU(inplace=True)
            )

    def forward(self, x):
        return self.layers(x)
    
class PredictiveModuleBit(nn.Module):
    def __init__(self, channel_in, nf, block_num_rbm=4, block_num_trans=2):
        super(PredictiveModuleBit, self).__init__()
        self.conv_in = nn.Conv2d(channel_in, nf, 3, 1, 1, bias=True)
        res_block = []
        trans_block = []
        for i in range(block_num_rbm):
            res_block.append(ResidualBlockNoBN(nf))
        for j in range(block_num_trans):
            trans_block.append(TransformerBlock(nf))
        
        blocks = 4
        layers = [ConvRelu(nf, 1, 2)]
        for _ in range(blocks - 1):
            layer = ConvRelu(1, 1, 2)
            layers.append(layer)
        self.layers = nn.Sequential(*layers)

        self.res_block = nn.Sequential(*res_block)
        self.transformer_block = nn.Sequential(*trans_block)

    def forward(self, x):
        x = self.conv_in(x)
        x = self.res_block(x)
        res = self.transformer_block(x) + x
        res = self.layers(res)

        return res


##---------- Prompt Gen Module -----------------------
class PromptGenBlock(nn.Module):
    def __init__(self,prompt_dim=12,prompt_len=3,prompt_size = 36,lin_dim = 12):
        super(PromptGenBlock,self).__init__()
        self.prompt_param = nn.Parameter(torch.rand(1,prompt_len,prompt_dim,prompt_size,prompt_size))
        self.linear_layer = nn.Linear(lin_dim,prompt_len)
        self.conv3x3 = nn.Conv2d(prompt_dim,prompt_dim,kernel_size=3,stride=1,padding=1,bias=False)
        

    def forward(self,x):
        B,C,H,W = x.shape
        emb = x.mean(dim=(-2,-1))
        prompt_weights = F.softmax(self.linear_layer(emb),dim=1)
        prompt = prompt_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) * self.prompt_param.unsqueeze(0).repeat(B,1,1,1,1,1).squeeze(1)
        prompt = torch.sum(prompt,dim=1)
        prompt = F.interpolate(prompt,(H,W),mode="bilinear")
        prompt = self.conv3x3(prompt)

        return prompt

class PredictiveModuleMIMO_prompt(nn.Module):
    def __init__(self, channel_in, nf, prompt_len=3, block_num_rbm=8, block_num_trans=4):
        super(PredictiveModuleMIMO_prompt, self).__init__()
        self.conv_in = nn.Conv2d(channel_in, nf, 3, 1, 1, bias=True)
        res_block = []
        trans_block = []
        for i in range(block_num_rbm):
            res_block.append(ResidualBlockNoBN(nf))
        for j in range(block_num_trans):
            trans_block.append(TransformerBlock(nf))

        self.res_block = nn.Sequential(*res_block)
        self.transformer_block = nn.Sequential(*trans_block)
        self.prompt = PromptGenBlock(prompt_dim=nf,prompt_len=prompt_len,prompt_size = 36,lin_dim = nf)
        self.fuse = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True)

    def forward(self, x):
        x = self.conv_in(x)
        x = self.res_block(x)
        res = self.transformer_block(x) + x
        prompt = self.prompt(res)

        result = self.fuse(torch.cat([res, prompt], dim=1))

        return result

def gauss_noise(shape):
    noise = torch.zeros(shape).cuda()
    for i in range(noise.shape[0]):
        noise[i] = torch.randn(noise[i].shape).cuda()

    return noise

def gauss_noise_mul(shape):
    noise = torch.randn(shape).cuda()

    return noise

class PredictiveModuleBit_prompt(nn.Module):
    def __init__(self, channel_in, nf, prompt_length, block_num_rbm=4, block_num_trans=2):
        super(PredictiveModuleBit_prompt, self).__init__()
        self.conv_in = nn.Conv2d(channel_in, nf, 3, 1, 1, bias=True)
        res_block = []
        trans_block = []
        for i in range(block_num_rbm):
            res_block.append(ResidualBlockNoBN(nf))
        for j in range(block_num_trans):
            trans_block.append(TransformerBlock(nf))
        
        blocks = 4
        layers = [ConvRelu(nf, 1, 2)]
        for _ in range(blocks - 1):
            layer = ConvRelu(1, 1, 2)
            layers.append(layer)
        self.layers = nn.Sequential(*layers)

        self.res_block = nn.Sequential(*res_block)
        self.transformer_block = nn.Sequential(*trans_block)
        self.prompt = PromptGenBlock(prompt_dim=nf,prompt_len=prompt_length,prompt_size = 36,lin_dim = nf)
        self.fuse = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True)

    def forward(self, x):
        x = self.conv_in(x)
        x = self.res_block(x)
        res = self.transformer_block(x) + x
        prompt = self.prompt(res)
        res = self.fuse(torch.cat([res, prompt], dim=1))
        res = self.layers(res)

        return res

class VSN(nn.Module):
    def __init__(self, opt, subnet_constructor=None, subnet_constructor_v2=None, down_num=2):
        super(VSN, self).__init__()
        self.model = opt['model']
        self.mode = opt['mode']
        opt_net = opt['network_G']
        self.num_image = opt['num_image']
        self.gop = opt['gop']
        self.channel_in = opt_net['in_nc'] * self.gop
        self.channel_out = opt_net['out_nc'] * self.gop
        self.channel_in_hi = opt_net['in_nc'] * self.gop
        self.channel_in_ho = opt_net['in_nc'] * self.gop
        self.message_len = opt['message_length']

        self.block_num = opt_net['block_num']
        self.block_num_rbm = opt_net['block_num_rbm']
        self.block_num_trans = opt_net['block_num_trans']
        self.nf = self.channel_in_hi 
        
        self.bitencoder = DW_Encoder(self.message_len, attention = "se")
        self.bitdecoder = DW_Decoder(self.message_len, attention = "se")
        self.irn = InvNN(self.channel_in_ho, self.channel_in_hi, subnet_constructor, subnet_constructor_v2, self.block_num, down_num, groups=self.num_image)

        if opt['prompt']:
            self.pm = PredictiveModuleMIMO_prompt(self.channel_in_ho, self.nf* self.num_image, opt['prompt_len'], block_num_rbm=self.block_num_rbm, block_num_trans=self.block_num_trans)
        else:
            self.pm = PredictiveModuleMIMO(self.channel_in_ho, self.nf* self.num_image, opt['prompt_len'], block_num_rbm=self.block_num_rbm, block_num_trans=self.block_num_trans)
            self.BitPM = PredictiveModuleBit(3, 4, block_num_rbm=4, block_num_trans=2)


    def forward(self, x, x_h=None, message=None, rev=False, hs=[], direction='f'):
        if not rev:
            if self.mode == "image":
                out_y, out_y_h = self.irn(x, x_h, rev)
                out_y = iwt(out_y)
                encoded_image = self.bitencoder(out_y, message)          
                return out_y, encoded_image
            
            elif self.mode == "bit":
                out_y = iwt(x)
                encoded_image = self.bitencoder(out_y, message)            
                return out_y, encoded_image

        else:
            if self.mode == "image":
                recmessage = self.bitdecoder(x)

                x = dwt(x)
                out_z = self.pm(x).unsqueeze(1)
                out_z_new = out_z.view(-1, self.num_image, self.channel_in, x.shape[-2], x.shape[-1])
                out_z_new = [out_z_new[:,i] for i in range(self.num_image)]
                out_x, out_x_h = self.irn(x, out_z_new, rev)

                return out_x, out_x_h, out_z, recmessage
            
            elif self.mode == "bit":
                recmessage = self.bitdecoder(x)
                return recmessage