File size: 6,583 Bytes
5d21dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from torch import nn as nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm


class UNetDiscriminatorSN(nn.Module):
    """Defines a U-Net discriminator with spectral normalization (SN)

    It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.

    Arg:
        num_in_ch (int): Channel number of inputs. Default: 3.
        num_feat (int): Channel number of base intermediate features. Default: 64.
        skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
    """

    def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
        super(UNetDiscriminatorSN, self).__init__()
        self.skip_connection = skip_connection
        norm = spectral_norm
        # the first convolution
        self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
        # downsample
        self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
        self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
        self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
        # upsample
        self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
        self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
        self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
        # extra convolutions
        self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
        self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
        self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)

    def forward(self, x):
        # downsample
        x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
        x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
        x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
        x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)

        # upsample
        x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
        x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)

        if self.skip_connection:
            x4 = x4 + x2
        x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
        x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)

        if self.skip_connection:
            x5 = x5 + x1
        x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
        x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)

        if self.skip_connection:
            x6 = x6 + x0

        # extra convolutions
        out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
        out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
        out = self.conv9(out)

        return out
    

class GANLoss(nn.Module):
    """Define GAN loss.

    Args:
        gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'.
        real_label_val (float): The value for real label. Default: 1.0.
        fake_label_val (float): The value for fake label. Default: 0.0.
        loss_weight (float): Loss weight. Default: 1.0.
            Note that loss_weight is only for generators; and it is always 1.0
            for discriminators.
    """

    def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
        super(GANLoss, self).__init__()
        self.gan_type = gan_type
        self.loss_weight = loss_weight
        self.real_label_val = real_label_val
        self.fake_label_val = fake_label_val

        if self.gan_type == 'vanilla':
            self.loss = nn.BCEWithLogitsLoss()
        elif self.gan_type == 'lsgan':
            self.loss = nn.MSELoss()
        elif self.gan_type == 'wgan':
            self.loss = self._wgan_loss
        elif self.gan_type == 'wgan_softplus':
            self.loss = self._wgan_softplus_loss
        elif self.gan_type == 'hinge':
            self.loss = nn.ReLU()
        else:
            raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.')

    def _wgan_loss(self, input, target):
        """wgan loss.

        Args:
            input (Tensor): Input tensor.
            target (bool): Target label.

        Returns:
            Tensor: wgan loss.
        """
        return -input.mean() if target else input.mean()

    def _wgan_softplus_loss(self, input, target):
        """wgan loss with soft plus. softplus is a smooth approximation to the
        ReLU function.

        In StyleGAN2, it is called:
            Logistic loss for discriminator;
            Non-saturating loss for generator.

        Args:
            input (Tensor): Input tensor.
            target (bool): Target label.

        Returns:
            Tensor: wgan loss.
        """
        return F.softplus(-input).mean() if target else F.softplus(input).mean()

    def get_target_label(self, input, target_is_real):
        """Get target label.

        Args:
            input (Tensor): Input tensor.
            target_is_real (bool): Whether the target is real or fake.

        Returns:
            (bool | Tensor): Target tensor. Return bool for wgan, otherwise,
                return Tensor.
        """

        if self.gan_type in ['wgan', 'wgan_softplus']:
            return target_is_real
        target_val = (self.real_label_val if target_is_real else self.fake_label_val)
        return input.new_ones(input.size()) * target_val

    def forward(self, input, target_is_real, is_disc=False):
        """
        Args:
            input (Tensor): The input for the loss module, i.e., the network
                prediction.
            target_is_real (bool): Whether the targe is real or fake.
            is_disc (bool): Whether the loss for discriminators or not.
                Default: False.

        Returns:
            Tensor: GAN loss value.
        """
        target_label = self.get_target_label(input, target_is_real)
        if self.gan_type == 'hinge':
            if is_disc:  # for discriminators in hinge-gan
                input = -input if target_is_real else input
                loss = self.loss(1 + input).mean()
            else:  # for generators in hinge-gan
                loss = -input.mean()
        else:  # other gan types
            loss = self.loss(input, target_label)

        # loss_weight is always 1.0 for discriminators
        return loss if is_disc else loss * self.loss_weight