Spaces:
Sleeping
Sleeping
File size: 8,303 Bytes
ebb132d f1bc138 ebb132d e7815c3 ebb132d 0ae9866 e5707e1 0ae9866 ebb132d f1bc138 68c3199 6253649 0ae9866 6253649 4327d80 0ae9866 6253649 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import openai
import sys
import gradio as gr
from IPython import get_ipython
import json
import requests
from tenacity import retry, wait_random_exponential, stop_after_attempt
from IPython import get_ipython
# from termcolor import colored # doesn't actually work in Colab ¯\_(ツ)_/¯
GPT_MODEL = "gpt-3.5-turbo-1106"
openai.api_key = os.environ['OPENAI_API_KEY']
messages=[]
def exec_python(cell):
ipython = get_ipython()
result = ipython.run_cell(cell)
log = str(result.result)
if result.error_before_exec is not None:
log += f"\n{result.error_before_exec}"
if result.error_in_exec is not None:
log += f"\n{result.error_in_exec}"
prompt = """You are a genius math tutor, Python code expert, and a helpful assistant.
answer = {ans}
Please answer user questions very well with explanations and match it with the multiple choices question.
""".format(ans = log)
return log
# Now let's define the function specification:
functions = [
{
"name": "exec_python",
"description": "run cell in ipython and return the execution result.",
"parameters": {
"type": "object",
"properties": {
"cell": {
"type": "string",
"description": "Valid Python cell to execute.",
}
},
"required": ["cell"],
},
},
]
# In order to run these functions automatically, we should maintain a dictionary:
functions_dict = {
"exec_python": exec_python,
}
def openai_api_calculate_cost(usage,model=GPT_MODEL):
pricing = {
# 'gpt-3.5-turbo-4k': {
# 'prompt': 0.0015,
# 'completion': 0.002,
# },
# 'gpt-3.5-turbo-16k': {
# 'prompt': 0.003,
# 'completion': 0.004,
# },
'gpt-3.5-turbo-1106': {
'prompt': 0.001,
'completion': 0.002,
},
# 'gpt-4-1106-preview': {
# 'prompt': 0.01,
# 'completion': 0.03,
# },
# 'gpt-4-32k': {
# 'prompt': 0.06,
# 'completion': 0.12,
# },
# 'text-embedding-ada-002-v2': {
# 'prompt': 0.0001,
# 'completion': 0.0001,
# }
}
try:
model_pricing = pricing[model]
except KeyError:
raise ValueError("Invalid model specified")
prompt_cost = usage['prompt_tokens'] * model_pricing['prompt'] / 1000
completion_cost = usage['completion_tokens'] * model_pricing['completion'] / 1000
total_cost = prompt_cost + completion_cost
print(f"\nTokens used: {usage['prompt_tokens']:,} prompt + {usage['completion_tokens']:,} completion = {usage['total_tokens']:,} tokens")
print(f"Total cost for {model}: ${total_cost:.4f}\n")
return total_cost
@retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
def chat_completion_request(messages, functions=None, function_call=None, model=GPT_MODEL):
"""
This function sends a POST request to the OpenAI API to generate a chat completion.
Parameters:
- messages (list): A list of message objects. Each object should have a 'role' (either 'system', 'user', or 'assistant') and 'content'
(the content of the message).
- functions (list, optional): A list of function objects that describe the functions that the model can call.
- function_call (str or dict, optional): If it's a string, it can be either 'auto' (the model decides whether to call a function) or 'none'
(the model will not call a function). If it's a dict, it should describe the function to call.
- model (str): The ID of the model to use.
Returns:
- response (requests.Response): The response from the OpenAI API. If the request was successful, the response's JSON will contain the chat completion.
"""
# Set up the headers for the API request
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer " + openai.api_key,
}
# Set up the data for the API request
json_data = {"model": model, "messages": messages}
# If functions were provided, add them to the data
if functions is not None:
json_data.update({"functions": functions})
# If a function call was specified, add it to the data
if function_call is not None:
json_data.update({"function_call": function_call})
# Send the API request
try:
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=json_data,
)
return response
except Exception as e:
print("Unable to generate ChatCompletion response")
print(f"Exception: {e}")
return e
def first_call(init_prompt, user_input):
# Set up a conversation
messages = []
messages.append({"role": "system", "content": init_prompt})
# Write a user message that perhaps our function can handle...?
messages.append({"role": "user", "content": user_input})
# Generate a response
chat_response = chat_completion_request(
messages, functions=functions
)
# Save the JSON to a variable
assistant_message = chat_response.json()["choices"][0]["message"]
# Append response to conversation
messages.append(assistant_message)
usage = chat_response.json()['usage']
cost1 = openai_api_calculate_cost(usage)
# Let's see what we got back before continuing
return assistant_message, cost1
def second_prompt_build(prompt, log):
prompt_second = prompt.format(ans = log)
return prompt_second
def function_call_process(assistant_message):
if assistant_message.get("function_call") != None:
# Retrieve the name of the relevant function
function_name = assistant_message["function_call"]["name"]
# Retrieve the arguments to send the function
# function_args = json.loads(assistant_message["function_call"]["arguments"], strict=False)
arg_dict = {'cell': assistant_message["function_call"]["arguments"]}
# print(function_args)
# Look up the function and call it with the provided arguments
result = functions_dict[function_name](**arg_dict)
return result
# print(result)
def second_call(prompt, result, function_name = "exec_python"):
# Add a new message to the conversation with the function result
messages.append({
"role": "function",
"name": function_name,
"content": str(result), # Convert the result to a string
})
# Call the model again to generate a user-facing message based on the function result
chat_response = chat_completion_request(
messages, functions=functions
)
assistant_message = chat_response.json()["choices"][0]["message"]
messages.append(assistant_message)
usage = chat_response.json()['usage']
cost2 = openai_api_calculate_cost(usage)
# Print the final conversation
# pretty_print_conversation(messages)
return assistant_message, cost2
def main_function(init_prompt, prompt, user_input):
first_call_result, cost1 = first_call(init_prompt, user_input)
function_call_process_result = function_call_process(first_call_result)
second_prompt_build_result = second_prompt_build(prompt, function_call_process_result)
second_call_result, cost2 = second_call(second_prompt_build_result, function_call_process_result)
return first_call_result, function_call_process_result, second_call_result, cost1, cost2
def gradio_function():
init_prompt = gr.Textbox(label="init_prompt (for 1st call)")
prompt = gr.Textbox(label="prompt (for 2nd call)")
user_input = gr.Textbox(label="User Input")
output_1st_call = gr.Textbox(label="output_1st_call")
output_fc_call = gr.Textbox(label="output_fc_call")
output_2nd_call = gr.Textbox(label="output_2nd_call")
cost = gr.Textbox(label="Cost 1")
cost2 = gr.Textbox(label="Cost 2")
iface = gr.Interface(
fn=main_function,
inputs=[init_prompt, prompt, user_input],
outputs=[output_1st_call, output_fc_call, output_2nd_call, cost, cost2],
title="Test",
description="Accuracy",
)
iface.launch(share=True)
if __name__ == "__main__":
gradio_function() |