File size: 8,303 Bytes
ebb132d
 
 
 
 
f1bc138
ebb132d
 
 
e7815c3
ebb132d
 
 
0ae9866
e5707e1
0ae9866
 
ebb132d
f1bc138
 
 
 
 
 
 
 
 
 
 
 
 
 
68c3199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6253649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae9866
6253649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4327d80
0ae9866
6253649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import openai
import sys

import gradio as gr
from IPython import get_ipython
import json
import requests
from tenacity import retry, wait_random_exponential, stop_after_attempt
from IPython import get_ipython
# from termcolor import colored # doesn't actually work in Colab ¯\_(ツ)_/¯

GPT_MODEL = "gpt-3.5-turbo-1106"

openai.api_key  = os.environ['OPENAI_API_KEY']

messages=[]

def exec_python(cell):
    ipython = get_ipython()
    result = ipython.run_cell(cell)
    log = str(result.result)
    if result.error_before_exec is not None:
        log += f"\n{result.error_before_exec}"
    if result.error_in_exec is not None:
        log += f"\n{result.error_in_exec}"
    prompt = """You are a genius math tutor, Python code expert, and a helpful assistant.
    answer = {ans}
    Please answer user questions very well with explanations and match it with the multiple choices question.
    """.format(ans = log)
    return log

# Now let's define the function specification:
functions = [
    {
           "name": "exec_python",
            "description": "run cell in ipython and return the execution result.",
            "parameters": {
                "type": "object",
                "properties": {
                    "cell": {
                        "type": "string",
                        "description": "Valid Python cell to execute.",
                    }
                },
                "required": ["cell"],
            },
    },
]

# In order to run these functions automatically, we should maintain a dictionary:
functions_dict = {
    "exec_python": exec_python,
}

def openai_api_calculate_cost(usage,model=GPT_MODEL):
    pricing = {
        # 'gpt-3.5-turbo-4k': {
        #     'prompt': 0.0015,
        #     'completion': 0.002,
        # },
        # 'gpt-3.5-turbo-16k': {
        #     'prompt': 0.003,
        #     'completion': 0.004,
        # },
        'gpt-3.5-turbo-1106': {
            'prompt': 0.001,
            'completion': 0.002,
        },
        # 'gpt-4-1106-preview': {
        #     'prompt': 0.01,
        #     'completion': 0.03,
        # },
        # 'gpt-4-32k': {
        #     'prompt': 0.06,
        #     'completion': 0.12,
        # },
        # 'text-embedding-ada-002-v2': {
        #     'prompt': 0.0001,
        #     'completion': 0.0001,
        # }
    }

    try:
        model_pricing = pricing[model]
    except KeyError:
        raise ValueError("Invalid model specified")

    prompt_cost = usage['prompt_tokens'] * model_pricing['prompt'] / 1000
    completion_cost = usage['completion_tokens'] * model_pricing['completion'] / 1000

    total_cost = prompt_cost + completion_cost
    print(f"\nTokens used:  {usage['prompt_tokens']:,} prompt + {usage['completion_tokens']:,} completion = {usage['total_tokens']:,} tokens")
    print(f"Total cost for {model}: ${total_cost:.4f}\n")

    return total_cost


@retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
def chat_completion_request(messages, functions=None, function_call=None, model=GPT_MODEL):
    """
    This function sends a POST request to the OpenAI API to generate a chat completion.
    Parameters:
    - messages (list): A list of message objects. Each object should have a 'role' (either 'system', 'user', or 'assistant') and 'content'
      (the content of the message).
    - functions (list, optional): A list of function objects that describe the functions that the model can call.
    - function_call (str or dict, optional): If it's a string, it can be either 'auto' (the model decides whether to call a function) or 'none'
      (the model will not call a function). If it's a dict, it should describe the function to call.
    - model (str): The ID of the model to use.
    Returns:
    - response (requests.Response): The response from the OpenAI API. If the request was successful, the response's JSON will contain the chat completion.
    """

    # Set up the headers for the API request
    headers = {
        "Content-Type": "application/json",
        "Authorization": "Bearer " + openai.api_key,
    }

    # Set up the data for the API request
    json_data = {"model": model, "messages": messages}

    # If functions were provided, add them to the data
    if functions is not None:
        json_data.update({"functions": functions})

    # If a function call was specified, add it to the data
    if function_call is not None:
        json_data.update({"function_call": function_call})

    # Send the API request
    try:
        response = requests.post(
            "https://api.openai.com/v1/chat/completions",
            headers=headers,
            json=json_data,
        )
        return response
    except Exception as e:
        print("Unable to generate ChatCompletion response")
        print(f"Exception: {e}")
        return e

def first_call(init_prompt, user_input):
  # Set up a conversation
  messages = []
  messages.append({"role": "system", "content": init_prompt})

  # Write a user message that perhaps our function can handle...?
  messages.append({"role": "user", "content": user_input})

  # Generate a response
  chat_response = chat_completion_request(
      messages, functions=functions
  )


  # Save the JSON to a variable
  assistant_message = chat_response.json()["choices"][0]["message"]

  # Append response to conversation
  messages.append(assistant_message)

  usage = chat_response.json()['usage']
  cost1 = openai_api_calculate_cost(usage)

  # Let's see what we got back before continuing
  return assistant_message, cost1


def second_prompt_build(prompt, log):
  prompt_second = prompt.format(ans = log)
  return prompt_second

def function_call_process(assistant_message):
  if assistant_message.get("function_call") != None:

    # Retrieve the name of the relevant function
    function_name = assistant_message["function_call"]["name"]

    # Retrieve the arguments to send the function
    # function_args = json.loads(assistant_message["function_call"]["arguments"], strict=False)
    arg_dict =  {'cell': assistant_message["function_call"]["arguments"]}
    # print(function_args)

    # Look up the function and call it with the provided arguments
    result = functions_dict[function_name](**arg_dict)
    return result

    # print(result)

def second_call(prompt, result, function_name = "exec_python"):
  # Add a new message to the conversation with the function result
  messages.append({
      "role": "function",
      "name": function_name,
      "content": str(result),  # Convert the result to a string
  })

  # Call the model again to generate a user-facing message based on the function result
  chat_response = chat_completion_request(
      messages, functions=functions
  )
  assistant_message = chat_response.json()["choices"][0]["message"]
  messages.append(assistant_message)

  usage = chat_response.json()['usage']
  cost2 = openai_api_calculate_cost(usage)

  # Print the final conversation
  # pretty_print_conversation(messages)
  return assistant_message, cost2


def main_function(init_prompt, prompt, user_input):
    first_call_result, cost1 = first_call(init_prompt, user_input)
    function_call_process_result = function_call_process(first_call_result)
    second_prompt_build_result = second_prompt_build(prompt, function_call_process_result)
    second_call_result, cost2 = second_call(second_prompt_build_result, function_call_process_result)
    return first_call_result, function_call_process_result, second_call_result, cost1, cost2

def gradio_function():
    init_prompt = gr.Textbox(label="init_prompt (for 1st call)")
    prompt = gr.Textbox(label="prompt (for 2nd call)")
    user_input = gr.Textbox(label="User Input")
    output_1st_call = gr.Textbox(label="output_1st_call")
    output_fc_call = gr.Textbox(label="output_fc_call")
    output_2nd_call = gr.Textbox(label="output_2nd_call")
    cost = gr.Textbox(label="Cost 1")
    cost2 = gr.Textbox(label="Cost 2")


    iface = gr.Interface(
        fn=main_function,
        inputs=[init_prompt, prompt, user_input],
        outputs=[output_1st_call, output_fc_call, output_2nd_call, cost, cost2],
        title="Test",
        description="Accuracy",
    )

    iface.launch(share=True)

if __name__ == "__main__":
    gradio_function()