File size: 11,820 Bytes
e6eed3e
 
 
c7e882b
 
 
 
4f37a95
 
 
c7e882b
4f37a95
 
 
 
7888f4e
 
82c7bd7
 
7888f4e
82c7bd7
 
 
0087319
 
7806391
e6eed3e
0087319
 
 
 
 
 
 
 
 
 
0cbfe8a
0087319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3790d0
d6833b2
5cb4e30
 
 
 
 
b5c13e8
 
5cb4e30
 
 
 
 
a570e5b
 
5cb4e30
82c7bd7
 
 
 
5d24547
82c7bd7
 
 
 
 
 
 
 
ba9248c
82c7bd7
 
 
5d24547
 
 
82c7bd7
 
 
 
5cb4e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3790d0
5cb4e30
 
 
 
 
 
 
 
d3790d0
5cb4e30
 
 
 
 
 
 
 
 
 
 
 
 
04cfbb0
 
0087319
5cb4e30
82c7bd7
 
4ef217c
93dfb16
82c7bd7
93dfb16
7888f4e
6e80961
94738ba
 
0dbcd20
 
 
 
 
 
 
 
 
d9e50c1
 
 
 
 
 
 
 
a96cbe2
 
 
d9e50c1
aade64b
d9e50c1
 
a60a5d2
7888f4e
 
 
 
aac57d1
bca077e
a1a551d
c1e6317
 
ba9248c
 
 
 
 
 
 
 
 
 
93dfb16
94738ba
93dfb16
b5c13e8
aade64b
 
b5c13e8
5e5b01f
 
d94c5b8
5e5b01f
 
 
 
 
 
 
 
d94c5b8
 
5e5b01f
 
7888f4e
 
 
 
 
 
 
 
b3db1c7
7888f4e
 
 
 
 
 
 
a96cbe2
7888f4e
 
 
a96cbe2
ca50697
7888f4e
058f6af
a96cbe2
 
 
 
04cfbb0
 
 
 
 
3f3e68d
a96cbe2
 
 
 
 
 
 
82c7bd7
 
7888f4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

import spaces

import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'amt/src')))

import subprocess
from typing import Tuple, Dict, Literal
from ctypes import ArgumentError

from html_helper import *
from model_helper import *

import torchaudio
import glob
import gradio as gr
from gradio_log import Log
from pathlib import Path

# gradio_log
log_file = 'amt/log.txt'
Path(log_file).touch()

# @title Load Checkpoint
model_name = "YMT3+" # 'YPTF.MoE+Multi (noPS)' # @param ["YMT3+", "YPTF+Single (noPS)", "YPTF+Multi (PS)", "YPTF.MoE+Multi (noPS)", "YPTF.MoE+Multi (PS)"]
precision = '16'# if torch.cuda.is_available() else '32'# @param ["32", "bf16-mixed", "16"]
project = '2024'

if model_name == "YMT3+":
    checkpoint = "[email protected]"
    args = [checkpoint, '-p', project, '-pr', precision]
elif model_name == "YPTF+Single (noPS)":
    checkpoint = "ptf_all_cross_rebal5_mirst_xk2_edr005_attend_c_full_plus_b100@model.ckpt"
    args = [checkpoint, '-p', project, '-enc', 'perceiver-tf', '-ac', 'spec',
            '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF+Multi (PS)":
    checkpoint = "mc13_256_all_cross_v6_xk5_amp0811_edr005_attend_c_full_plus_2psn_nl26_sb_b26r_800k@model.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256',
            '-dec', 'multi-t5', '-nl', '26', '-enc', 'perceiver-tf',
            '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF.MoE+Multi (noPS)":
    checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops@last.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
            '-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
            '-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
            '-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF.MoE+Multi (PS)":
    checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b80_ps2@model.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
            '-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
            '-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
            '-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
else:
    raise ValueError(model_name)

model = load_model_checkpoint(args=args, device="cpu")
# model.to("cuda")
# @title GradIO helper


def prepare_media(source_path_or_url: os.PathLike,
                  source_type: Literal['audio_filepath', 'youtube_url'],
                  delete_video: bool = True,
                  simulate = False) -> Dict:
    """prepare media from source path or youtube, and return audio info"""
    # Get audio_file
    if source_type == 'audio_filepath':
        audio_file = source_path_or_url
    elif source_type == 'youtube_url':
        if os.path.exists('/download/yt_audio.mp3'):
            os.remove('/download/yt_audio.mp3')
        # Download from youtube
        with open(log_file, 'w') as lf:
            audio_file = './downloaded/yt_audio'
            command = ['yt-dlp', '-x', source_path_or_url, '-f', 'bestaudio',
                '-o', audio_file, '--audio-format', 'mp3', '--restrict-filenames',
                '--extractor-retries', '10',
                '--force-overwrites', '--username', 'oauth2', '--password', '', '-v']
            if simulate:
                command = command + ['-s']
            process = subprocess.Popen(command,
                stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
        
            for line in iter(process.stdout.readline, ''):
                # Filter out unnecessary messages
                print(line)
                if "www.google.com/device" in line:
                    hl_text = line.replace("https://www.google.com/device", "\033[93mhttps://www.google.com/device\x1b[0m").split()
                    hl_text[-1] = "\x1b[31;1m" + hl_text[-1] + "\x1b[0m"
                    lf.write(' '.join(hl_text)); lf.flush()
                elif "Authorization successful" in line or "Video unavailable" in line:
                    lf.write(line); lf.flush()
            process.stdout.close()
            process.wait()
        
        audio_file += '.mp3'
    else:
        raise ValueError(source_type)

    # Create info
    info = torchaudio.info(audio_file)
    return {
        "filepath": audio_file,
        "track_name": os.path.basename(audio_file).split('.')[0],
        "sample_rate": int(info.sample_rate),
        "bits_per_sample": int(info.bits_per_sample),
        "num_channels": int(info.num_channels),
        "num_frames": int(info.num_frames),
        "duration": int(info.num_frames / info.sample_rate),
        "encoding": str.lower(info.encoding),
        }

@spaces.GPU
def process_audio(audio_filepath):
    if audio_filepath is None:
        return None
    audio_info = prepare_media(audio_filepath, source_type='audio_filepath')
    midifile = transcribe(model, audio_info)
    midifile = to_data_url(midifile)
    return create_html_from_midi(midifile) # html midiplayer

@spaces.GPU
def process_video(youtube_url):
    if 'youtu' not in youtube_url:
        return None
    audio_info = prepare_media(youtube_url, source_type='youtube_url')
    midifile = transcribe(model, audio_info)
    midifile = to_data_url(midifile)
    return create_html_from_midi(midifile) # html midiplayer

def play_video(youtube_url):
    if 'youtu' not in youtube_url:
        return None
    return create_html_youtube_player(youtube_url)

# def oauth_google():
#     return create_html_oauth()

AUDIO_EXAMPLES = glob.glob('examples/*.*', recursive=True)
YOUTUBE_EXAMPLES = ["https://youtu.be/5vJBhdjvVcE?si=s3NFG_SlVju0Iklg",
                    "https://www.youtube.com/watch?v=vMboypSkj3c",
                    "https://youtu.be/vRd5KEjX8vw?si=b-qw633ZjaX6Uxy5",
                    "https://youtu.be/bnS-HK_lTHA?si=PQLVAab3QHMbv0S3https://youtu.be/zJB0nnOc7bM?si=EA1DN8nHWJcpQWp_",
                    "https://youtu.be/7mjQooXt28o?si=qqmMxCxwqBlLPDI2",
                    "https://youtu.be/mIWYTg55h10?si=WkbtKfL6NlNquvT8"]

theme = gr.Theme.from_hub("gradio/dracula_revamped")
theme.text_md = '10px'
theme.text_lg = '12px'

theme.body_background_fill_dark = '#060a1c' #'#372037'# '#a17ba5' #'#73d3ac'
theme.border_color_primary_dark = '#45507328'
theme.block_background_fill_dark = '#3845685c'

theme.body_text_color_dark = 'white'
theme.block_title_text_color_dark = 'black'
theme.body_text_color_subdued_dark = '#e4e9e9'

css = """
.gradio-container {
    background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
    background-size: 400% 400%;
    animation: gradient 15s ease infinite;
    height: 100vh;
}
@keyframes gradient {
    0% {background-position: 0% 50%;}
    50% {background-position: 100% 50%;}
    100% {background-position: 0% 50%;}
}
#mylog {font-size: 12pt; line-height: 1.2; min-height: 2em; max-height: 4em;}  
"""

with gr.Blocks(theme=theme, css=css) as demo:

    with gr.Row():
        with gr.Column(scale=10):
            gr.Markdown(
            f"""
            ## 🎶YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation
            - Model name: `{model_name}`
                <details>
                <summary>▶model details◀</summary>
                     
                | **Component**            | **Details**                                      |
                |--------------------------|--------------------------------------------------|
                | Encoder backbone         | Perceiver-TF + Mixture of Experts (2/8)          |
                | Decoder backbone         | Multi-channel T5-small                           |
                | Tokenizer                | MT3 tokens with Singing extension                |
                | Dataset                  | YourMT3 dataset                                  |
                | Augmentation strategy    | Intra-/Cross dataset stem augment, No Pitch-shifting |
                | FP Precision             | BF16-mixed for training, FP16 for inference      |
                </details>
            
            ## Caution:
            - For acadmic reproduction purpose, we strongly recommend to use [Colab Demo](https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing) with multiple checkpoints.

            ## YouTube transcription (working 🚀):
            - Press the `Transcribe` button, copy the 12-digit code below, and paste it into `google.com/device`. (Only needed once.)

            <div style="display: inline-block;">
                <a href="https://arxiv.org/abs/2407.04822">
                    <img src="https://img.shields.io/badge/arXiv:2407.04822-B31B1B?logo=arxiv&logoColor=fff&style=plastic" alt="arXiv Badge"/>
                </a>
            </div>
            <div style="display: inline-block;">
                <a href="https://github.com/mimbres/YourMT3">
                    <img src="https://img.shields.io/badge/GitHub-181717?logo=github&logoColor=fff&style=plastic" alt="GitHub Badge"/>
                </a>
            </div>
            <div style="display: inline-block;">
                <a href="https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing">
                    <img src="https://img.shields.io/badge/Google%20Colab-F9AB00?logo=googlecolab&logoColor=fff&style=plastic"/>
                </a>
            </div>
            """)

    with gr.Group():
        with gr.Tab("Upload audio"):
            # Input
            audio_input = gr.Audio(label="Record Audio", type="filepath",
                                show_share_button=True, show_download_button=True)
            # Display examples
            gr.Examples(examples=AUDIO_EXAMPLES, inputs=audio_input)
            # Submit button
            transcribe_audio_button = gr.Button("Transcribe", variant="primary")
            # Transcribe
            output_tab1 = gr.HTML()
            transcribe_audio_button.click(process_audio, inputs=audio_input, outputs=output_tab1)

        with gr.Tab("From YouTube"):
            with gr.Column(scale=4):
                # Input URL
                youtube_url = gr.Textbox(label="YouTube Link URL",
                        placeholder="https://youtu.be/...")
                # Display examples
                gr.Examples(examples=YOUTUBE_EXAMPLES, inputs=youtube_url)
                # Play button
                play_video_button = gr.Button("Get Audio from YouTube", variant="primary")
                # Play youtube
                youtube_player = gr.HTML(render=True)

            with gr.Column(scale=4):
                    with gr.Row():
                        # Submit button
                        transcribe_video_button = gr.Button("Transcribe", variant="primary")
                        # Oauth button
                        oauth_button = gr.Button("google.com/device", variant="primary", link="https://www.google.com/device")
                    
            with gr.Column(scale=1):
                # Transcribe
                output_tab2 = gr.HTML(render=True)
                # video_output = gr.Text(label="Video Info")
                transcribe_video_button.click(process_video, inputs=youtube_url, outputs=output_tab2)
                # Play
                play_video_button.click(play_video, inputs=youtube_url, outputs=youtube_player)
            with gr.Column(scale=1):
                Log(log_file, dark=True, xterm_font_size=12, elem_id='mylog')

demo.launch(debug=True)