File size: 20,055 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
import numpy as np
from typing import Optional, Union, Tuple, Dict, Any, List, Counter
from utils.note_event_dataclasses import NoteEvent, Event, NoteEventListsBundle
from config.task import task_cfg
from config.config import model_cfg
from utils.tokenizer import NoteEventTokenizer
from utils.utils import create_program2channel_vocab
from utils.note2event import separate_channel_by_program_group_from_note_event_lists_bundle
SINGING_PROGRAM = 100
DRUM_PROGRAM = 128
UNANNOTATED_PROGRAM = 129
# import random
# class RandomProgramSampler:
# def __init__(self, program_vocab: Dict[str, int], max_n: int = 7):
# for key, values in program_vocab.items():
# for value in values:
# self.inverse_vocab_program[value] = values[0]
# self.max_n = max_n
# self.shuffled_
# def sample(self):
# def shuffle_and_repeat_randomly(lst, max_n=5):
# shuffled = lst.copy()
# random.shuffle(shuffled)
# index = 0
# while True:
# if index >= len(shuffled): # ๋ฆฌ์คํธ์ ๋ชจ๋ ์์๊ฐ ์ฌ์ฉ๋๋ฉด, ๋ค์ ์
ํ
# random.shuffle(shuffled)
# index = 0
# n = random.randint(1, max_n) # 1๊ณผ max_n ์ฌ์ด์ ๋๋คํ ๊ฐ์ ๊ฒฐ์
# end_index = index + n
# if end_index > len(shuffled): # ๋ฆฌ์คํธ์ ๋์ ๋์ด๊ฐ๋ ๊ฒฝ์ฐ, ๋ฆฌ์คํธ์ ๋๊น์ง๋ง ๋ฐํ
# yield shuffled[index:]
# index = len(shuffled)
# else:
# yield shuffled[index:end_index]
# index = end_index
class TaskManager:
"""
The TaskManager class manages tasks for training. It is initialized with a task name and retrieves
the corresponding configuration from the task_cfg dictionary defined in config/task.py.
Attributes:
# Basic
task_name (str): The name of the task being managed.
base_codec (str): The base codec associated with the task.
train_program_vocab (dict): The program vocabulary used for training.
train_drum_vocab (dict): The drum vocabulary used for training.
subtask_tokens (list): Additional tokens specific to subtasks, if any.
extra_tokens (list): Extra tokens used in the task, including subtask tokens.
ignore_decoding_tokens (list): Tokens to ignore during decoding.
ignore_decoding_tokens_by_delimiter (Optional, list[str, str]): Tokens to ignore during decoding by delimiters. Default is None.
tokenizer (NoteEventTokenizer): An instance of the NoteEventTokenizer class for tokenizing note events.
eval_subtask_prefix (dict): A dictionary defining evaluation subtask prefixes to tokens.
# Multi-channel decoding task exclusive
num_decoding_channels (int): The number of decoding channels.
max_token_length_per_ch (int): The maximum token length per channel.
mask_loss_strategy (str): The mask loss strategy to use. NOT IMPLEMENTED YET.
program2channel_vocab (dict): A dictionary mapping program to channel.
Methods:
get_tokenizer(): Returns the tokenizer instance associated with the task.
set_tokenizer(): Initializes the tokenizer using the NoteEventTokenizer class with the appropriate parameters.
"""
def __init__(self, task_name: str = "mt3_full_plus", max_shift_steps: int = 206, debug_mode: bool = False):
"""
Initializes a TaskManager object with the specified task name.
Args:
task_name (str): The name of the task to manage.
max_shift_steps (int): The maximum shift steps for the tokenizer. Default is 206. Definable in config/config.py.
debug_mode (bool): Whether to enable debug mode. Default is False.
"""
self.debug_mode = debug_mode
self.task_name = task_name
if task_name not in task_cfg.keys():
raise ValueError("Invalid task name")
else:
self.task = task_cfg[task_name]
# Basic task parameters
self.base_codec = self.task.get("base_codec", "mt3")
self.train_program_vocab = self.task["train_program_vocab"]
self.train_drum_vocab = self.task["train_drum_vocab"]
self.subtask_tokens = self.task.get("subtask_tokens", [])
self.extra_tokens = self.subtask_tokens + self.task.get("extra_tokens", [])
self.ignore_decoding_tokens = self.task.get("ignore_decoding_tokens", [])
self.ignore_decoding_tokens_from_and_to = self.task.get("ignore_decoding_tokens_from_and_to", None)
self.max_note_token_length = self.task.get("max_note_token_length", model_cfg["event_length"])
self.max_task_token_length = self.task.get("max_task_token_length", 0)
self.padding_task_token = self.task.get("padding_task_token", False)
self._eval_subtask_prefix = self.task.get("eval_subtask_prefix", None)
self.eval_subtask_prefix_dict = {}
# Multi-channel decoding exclusive parameters
self.num_decoding_channels = self.task.get("num_decoding_channels", 1)
if self.num_decoding_channels > 1:
program2channel_vocab_source = self.task.get("program2channel_vocab_source", None)
if program2channel_vocab_source is None:
program2channel_vocab_source = self.train_program_vocab
# Create an inverse mapping of program to channel
if self.num_decoding_channels == len(program2channel_vocab_source) + 1:
self.program2channel_vocab, _ = create_program2channel_vocab(program2channel_vocab_source)
else:
raise ValueError("Invalid num_decoding_channels, or program2channel_vocab not provided")
self.max_note_token_length_per_ch = self.task.get("max_note_token_length_per_ch")
self.mask_loss_strategy = self.task.get("mask_loss_strategy", None) # Not implemented yet
else:
self.max_note_token_length_per_ch = self.max_note_token_length
# Define max_total_token_length
self.max_total_token_length = self.max_note_token_length_per_ch + self.max_task_token_length
# Max shift steps for the tokenizer
self.max_shift_steps = max_shift_steps
# Initialize a tokenizer
self.set_tokenizer()
self.set_eval_task_prefix()
self.num_tokens = self.tokenizer.num_tokens
self.inverse_vocab_program = self.tokenizer.codec.inverse_vocab_program
def set_eval_task_prefix(self) -> None:
"""
Sets the evaluation task prefix for the task.
Example:
self.eval_task_prefix_dict = {
"default": [Event("transcribe_all", 0), Event("task", 0)],
"singing-only": [Event("transcribe_singing", 0), Event("task", 0)]
}
"""
if self._eval_subtask_prefix is not None:
assert "default" in self._eval_subtask_prefix.keys()
for key, val in self._eval_subtask_prefix.items():
if self.padding_task_token:
self.eval_subtask_prefix_dict[key] = self.tokenizer.encode_task(
val, max_length=self.max_task_token_length)
else:
self.eval_subtask_prefix_dict[key] = self.tokenizer.encode_task(val)
else:
self.eval_subtask_prefix_dict["default"] = []
def get_eval_subtask_prefix_dict(self) -> dict:
return self.eval_subtask_prefix_dict
def get_tokenizer(self) -> NoteEventTokenizer:
"""
Returns the tokenizer instance associated with the task.
Returns:
NoteEventTokenizer: The tokenizer instance.
"""
return self.tokenizer
def set_tokenizer(self) -> None:
"""
Initializes the tokenizer using the NoteEventTokenizer class with the appropriate parameters.
"""
self.tokenizer = NoteEventTokenizer(base_codec=self.base_codec,
max_length=self.max_total_token_length,
program_vocabulary=self.train_program_vocab,
drum_vocabulary=self.train_drum_vocab,
special_tokens=['PAD', 'EOS', 'UNK'],
extra_tokens=self.extra_tokens,
max_shift_steps=self.max_shift_steps,
ignore_decoding_tokens=self.ignore_decoding_tokens,
ignore_decoding_tokens_from_and_to=self.ignore_decoding_tokens_from_and_to,
debug_mode=self.debug_mode)
# Newly implemented for exclusive transcription task
def tokenize_task_and_note_events_batch(
self,
programs_segments: List[List[int]],
has_unannotated_segments: List[bool],
note_event_segments: NoteEventListsBundle,
subunit_programs_segments: Optional[List[List[np.ndarray]]] = None, # TODO
subunit_note_event_segments: Optional[List[NoteEventListsBundle]] = None, # TODO
stage: str = 'train' # 'train' or 'eval'
):
"""Tokenizes a batch of note events into a batch of encoded tokens.
Optionally, appends task tokens to the note event tokens.
Args:
programs_segments (List[int]): A list of program numbers.
has_unannotated_segments (bool): Whether the batch has unannotated segments.
note_event_segments (NoteEventListsBundle): A bundle of note events.
subunit_programs_segments (Optional[List[List[np.ndarray]]]): A list of subunit programs.
subunit_note_event_segments (Optional[List[NoteEventListsBundle]]): A list of subunit note events.
Returns:
np.ndarray: A batch of encoded tokens, with shape (B, C, L).
"""
if self.task_name == 'exclusive':
# batch_sz = len(programs_segments)
# token_array = np.zeros((batch_sz, self.num_decoding_channels, self.max_note_token_length_per_ch),
# dtype=np.int32)
# for programs, has_unannotated, note_events, tie_note_events, start_times in zip(
# programs_segments, has_unannotated_segments, note_event_segments['note_events'],
# note_event_segments['tie_note_events'], note_event_segments['start_times']):
# if has_unannotated:
# annotated_programs = [p for p in programs if p != UNANNOTATED_PROGRAM]
# note_token_array = self.tokenizer.encode_plus(note_events,
# tie_note_events,
# start_times,
# pad_to_max_length=False) # will append EOS token
# task_token_array = self.tokenizer.encode_task(task_events)
# else:
# annotated_programs = programs
# task_events = [Event('transcribe_all', 0), Event('task', 0)]
# note_token_array = self.tokenize_note_events_batch(note_events)
# task_token_array = self.tokenize_task_events(annotated_programs, has_unannotated)
# return []
raise NotImplementedError("Exclusive transcription task is not implemented yet.")
else:
# Default task: single or multi-channel decoding, without appending task tokens
return self.tokenize_note_events_batch(note_event_segments) # (B, C, L)
# Exclusive transcription task
# if has_unannotated_segments:
# annotated_programs = [p for p in programs_segments if p != UNANNOTATED_PROGRAM]
# else:
# annotated_programs = programs_segments
# # Main task: transcribe all
# main_task_events = self.task.get("eval_subtask_prefix")
def tokenize_note_events_batch(self,
note_event_segments: NoteEventListsBundle,
start_time_to_zero: bool = False,
sort: bool = True) -> np.ndarray:
"""Tokenizes a batch of note events into a batch of encoded tokens.
Args:
note_event_segments (NoteEventListsBundle): A bundle of note events.
Returns:
np.ndarray: A batch of encoded tokens, with shape (B, C, L).
"""
batch_sz = len(note_event_segments["note_events"])
note_token_array = np.zeros((batch_sz, self.num_decoding_channels, self.max_note_token_length_per_ch),
dtype=np.int32)
if self.num_decoding_channels == 1:
# Single-channel decoding task
zipped_events = list(zip(*note_event_segments.values()))
for b in range(batch_sz):
note_token_array[b, 0, :] = self.tokenizer.encode_plus(*zipped_events[b],
max_length=self.max_note_token_length,
pad_to_max_length=True)
elif self.num_decoding_channels > 1:
# Multi-channel decoding task
ch_sep_ne_bundle = separate_channel_by_program_group_from_note_event_lists_bundle(
source_note_event_lists_bundle=note_event_segments,
num_program_groups=self.num_decoding_channels,
program2channel_vocab=self.program2channel_vocab,
start_time_to_zero=start_time_to_zero,
sort=sort) # (batch_sz,)
for b in range(batch_sz):
zipped_channel = list(zip(*ch_sep_ne_bundle[b].values()))
for c in range(self.num_decoding_channels):
note_token_array[b, c, :] = self.tokenizer.encode_plus(*zipped_channel[c],
max_length=self.max_note_token_length_per_ch,
pad_to_max_length=True)
return note_token_array # (B, C, L)
def tokenize_note_events(self,
note_events: List[NoteEvent],
tie_note_events: Optional[List[NoteEvent]] = None,
start_time: float = 0.,
**kwargs: Any) -> List[int]:
"""(Deprecated) Tokenizes a sequence of note events into a sequence of encoded tokens."""
return self.tokenizer.encode_plus(note_events, tie_note_events, start_time, **kwargs)
# # This will be deprecated, currently used by datasets_eval.py
# def tokenize_task_events_batch(self, programs_segments: List[int],
# has_unannotated_segments: List[bool]) -> List[int]:
# """Tokenizes batch of task tokens from annotation info.
# Args:
# programs_segments (List[int]): A list of program numbers.
# has_unannotated_segments (bool): Whether the batch has unannotated segments.
# Returns:
# np.ndarray: Shape (B, C, L).
# """
# batch_sz = len(programs_segments)
# task_token_array = np.zeros((batch_sz, self.num_decoding_channels, self.max_task_token_length), dtype=np.int32)
# if self.max_task_token_length == 0:
# return task_token_array
# if self.num_decoding_channels == 1:
# for b in range(batch_sz):
# task_token_array[b, 0, :] = self.tokenize_task_events(programs_segments[b], has_unannotated_segments[b])
# elif self.num_decoding_channels > 1:
# for b in range(batch_sz):
# task_token_array[b, :, :] = self.tokenize_task_events(programs_segments[b], has_unannotated_segments[b])
# return task_token_array # (B, C, L)
def tokenize_task_events(self, programs: List[int], has_unannotated: bool) -> List[int]:
"""Tokenizes a sequence of programs into a sequence of encoded tokens. Used for training."""
if self.task_name == 'singing_drum_v1':
if has_unannotated:
if SINGING_PROGRAM in programs:
task_events = [Event('transcribe_singing', 0), Event('task', 0)]
elif DRUM_PROGRAM in programs:
task_events = [Event('transcribe_drum', 0), Event('task', 0)]
else:
task_events = [Event('transcribe_all', 0), Event('task', 0)]
else:
return []
if self.padding_task_token:
return self.tokenizer.encode_task(task_events, max_length=self.max_task_token_length)
else:
return self.tokenizer.encode_task(task_events)
def detokenize(
self,
tokens: List[int],
start_time: float = 0.,
return_events: bool = False
) -> Union[Tuple[List[NoteEvent], List[NoteEvent]], Tuple[List[NoteEvent], List[NoteEvent], List[Event], int]]:
"""Decodes a sequence of tokens into note events, ignoring specific token IDs.
Returns:
Union[Tuple[List[NoteEvent], List[NoteEvent]],
Tuple[List[NoteEvent], List[NoteEvent], List[Event], int]]: The decoded note events.
If `return_events` is False, the returned tuple contains `note_events`, `tie_note_events`,
`last_activity`, and `err_cnt`.
If `return_events` is True, the returned tuple contains `note_events`, `tie_note_events`,
`last_activity`, `events`, and `err_cnt`.
Notes:
This decoding process ignores specific token IDs based on `self.ids_to_ignore_decoding` attribute.
"""
return self.tokenizer.decode(tokens=tokens, start_time=start_time, return_events=return_events)
def detokenize_list_batches(
self,
list_batch_tokens: Union[List[List[List[int]]], List[np.ndarray]],
list_start_times: Union[List[List[float]], List[float]],
return_events: bool = False
) -> Union[Tuple[List[List[Tuple[List[NoteEvent], List[NoteEvent], int, float]]], Counter[str]], Tuple[
List[List[Tuple[List[NoteEvent], List[NoteEvent], int, float]]], List[List[Event]], Counter[str]]]:
""" Decodes a list of variable size batches of token array to a list of
zipped note_events and tie_note_events.
Args:
list_batch_tokens: List[np.ndarray], where array shape is (batch_size, variable_length)
list_start_times: List[float], where the length is sum of all batch_sizes.
return_events: bool
Returns:
list_list_zipped_note_events_and_tie:
List[
Tuple[
List[NoteEvent]: A list of note events.
List[NoteEvent]: A list of tie note events.
List[Tuple[int]]: A list of last activity of segment. [(program, pitch), ...]. This is useful
for validating notes within a batch of segments extracted from a file.
List[float]: A list of segment start times.
]
]
(Optional) list_events:
List[List[Event]]
total_err_cnt:
Counter[str]: error counter.
"""
return self.tokenizer.decode_list_batches(list_batch_tokens, list_start_times, return_events)
|