File size: 19,617 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
""" preprocess_enstdrums.py """
import os
import re
import glob
import copy
import json
import numpy as np
from typing import Dict
from utils.note_event_dataclasses import Note
from utils.audio import get_audio_file_info, load_audio_file, write_wav_file
from utils.midi import note_event2midi
from utils.note2event import note2note_event, sort_notes, validate_notes, trim_overlapping_notes, mix_notes
from config.vocabulary import ENST_DRUM_NOTES

DRUM_OFFSET = 0.01


def create_enst_audio_stem(drum_audio_file, accomp_audio_file, enst_id) -> Dict:
    program = [128, 129]
    is_drum = [1, 0]

    audio_tracks = []  # multi-channel audio array (C, T)
    drum_audio = load_audio_file(drum_audio_file, dtype=np.int16) / 2**15  # returns bytes
    audio_tracks.append(drum_audio.astype(np.float16))
    accomp_audio = load_audio_file(accomp_audio_file, dtype=np.int16) / 2**15  # returns bytes
    audio_tracks.append(accomp_audio.astype(np.float16))
    max_length = max(len(drum_audio), len(accomp_audio))

    # collate all the audio tracks into a single array
    n_tracks = 2
    audio_array = np.zeros((n_tracks, max_length), dtype=np.float16)
    for j, audio in enumerate(audio_tracks):
        audio_array[j, :len(audio)] = audio

    stem_content = {
        'enstdrums_id': enst_id,
        'program': program,
        'is_drum': is_drum,
        'n_frames': max_length,  # int
        'audio_array': audio_array  # (n_tracks, n_frames)
    }
    return stem_content


def create_note_note_event_midi_from_enst_annotation(ann_file, enst_id):
    """
    Args:
        ann_file: 'path/to/annotation.txt'
        enst_id: str
    Returns:
        notes: List[Note]
        note_events: List[NoteEvent]
        midi: List[List[int]]
    """
    # Read the text file and split each line into timestamp and drum instrument name
    with open(ann_file, 'r') as f:
        lines = f.readlines()  # ignore additional annotations like rc2, sd-
    anns = [(float(line.split()[0]), re.sub('[^a-zA-Z]', '', line.split()[1])) for line in lines]

    # Convert ann to notes by ENST_DRUM_NOTES vocabulary
    notes = []
    for time, drum_name in anns:
        if drum_name not in ENST_DRUM_NOTES.keys():
            raise ValueError(f"Drum name {drum_name} is not in ENST_DRUM_NOTES")
        notes.append(
            Note(
                is_drum=True,
                program=128,
                onset=float(time),
                offset=float(time) + DRUM_OFFSET,
                pitch=ENST_DRUM_NOTES[drum_name][0],
                velocity=1))

    notes = sort_notes(notes)
    notes = validate_notes(notes)
    notes = trim_overlapping_notes(notes)
    note_events = note2note_event(notes)

    # Write midi file
    midi_file = ann_file.replace('.txt', '.mid')
    note_event2midi(note_events, midi_file)
    print(f"Created {midi_file}")

    program = [128]
    is_drum = [1]

    return {  # notes
        'enstdrums_id': enst_id,
        'program': program,
        'is_drum': is_drum,
        'duration_sec': note_events[-1].time,
        'notes': notes,
    }, {  # note_events
        'enstdrums_id': enst_id,
        'program': program,
        'is_drum': is_drum,
        'duration_sec': note_events[-1].time,
        'note_events': note_events,
    }


def preprocess_enstdrums16k(data_home: os.PathLike, dataset_name='enstdrums') -> None:
    """
    Some tracks ('minus-one' in the file name) of ENST-drums contain accompaniments.
    'stem file' will contain these accompaniments. 'mix_audio_file' will contain the
    mix of the drums and accompaniments.

    Splits:
        - drummer_1, drummer_2, drummer_3, all
        - drummer3_dtd, drummer3_dtp, drummer3_dtm_r1, drummer3_dtm_r2 (for validation/test)

        DTD means drum track only, DTP means drum track plus percussions, DTM means
        drum track plus music.

        DTM r1 and r2 are two different versions of the mixing tracks derived from listening
        test in [Gillet 2008, Paulus 2009], and used in [Wu 2018].
        r1 uses 1:3 ratio of accompaniment to drums, and r2 uses 2:3 ratio.

        O. Gillet and G. Richard, “Transcription and separation of drum signals from polyphonic music,”
          IEEE Trans. Audio, Speech, Lang. Process., vol. 16, no. 3, pp. 529–540, Mar. 2008.
        J. Paulus and A. Klapuri, “Drum sound detection in polyphonic mu- sic with hidden Markov models,”
          EURASIP J. Audio, Speech, Music Process., vol. 2009, no. 14, 2009, Art. no. 14.
        C. -W. Wu et al., "A Review of Automatic Drum Transcription," 
          IEEE/ACM TASLP, vol. 26, no. 9, pp. 1457-1483, Sept. 2018, 
        
    Writes:
        - {dataset_name}_{split}_file_list.json: a dictionary with the following keys:
        {
            index:
            {
                'enstdrums_id': {drummer_id}_{3-digit-track-id} 
                'n_frames': (int),
                'stem_file': Dict of stem audio file with metadata,
                'mix_audio_file': 'path/to/mix.wav',
                'notes_file': 'path/to/notes.npy',
                'note_events_file': 'path/to/note_events.npy',
                'midi_file': 'path/to/midi.mid',
                'program': List[int], # 128 for drums, 129 for unannotated (accompaniment) 
                'is_drum': List[int], # 0 or 1
            }
        }
    """
    # Directory and file path
    base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
    output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
    os.makedirs(output_index_dir, exist_ok=True)

    # Gather info
    enst_ids = []
    enst_info = {}
    for i in [1, 2, 3]:
        drummer_files = sorted(
            glob.glob(os.path.join(base_dir, f'drummer_{i}', 'annotation/*.txt')))
        for file in drummer_files:
            track_id = os.path.basename(file).split('_')[0]
            enst_id = f'{i}_{track_id}'
            enst_ids.append(enst_id)

            # Create notes, note_events, and MIDI from annotation
            ann_file = file
            assert os.path.exists(ann_file), f'{ann_file} does not exist'
            notes, note_events = create_note_note_event_midi_from_enst_annotation(ann_file, enst_id)
            notes_file = ann_file.replace('.txt', '_notes.npy')
            note_events_file = ann_file.replace('.txt', '_note_events.npy')
            np.save(notes_file, notes, allow_pickle=True, fix_imports=False)
            print(f"Created {notes_file}")
            np.save(note_events_file, note_events, allow_pickle=True, fix_imports=False)
            print(f"Created {note_events_file}")

            # Create stem file from audio for accompaniment
            drum_audio_file = os.path.join(base_dir, f'drummer_{i}', 'audio', 'wet_mix',
                                           os.path.basename(file).replace('.txt', '.wav'))
            assert os.path.exists(drum_audio_file), f'{drum_audio_file} does not exist'

            if 'minus-one' in file:  # unannotated accompaniment exists
                # 129: Unannotated accompaniment exists
                accomp_audio_file = os.path.join(base_dir, f'drummer_{i}', 'audio', 'accompaniment',
                                                 os.path.basename(file).replace('.txt', '.wav'))
                assert os.path.exists(accomp_audio_file), f'{accomp_audio_file} does not exist'
                os.makedirs(os.path.join(base_dir, f'drummer_{i}', 'audio', 'stem'), exist_ok=True)
                stem_file = os.path.join(base_dir, f'drummer_{i}', 'audio', 'stem',
                                         os.path.basename(file).replace('.txt', '_stem.npy'))
                stem_content = create_enst_audio_stem(drum_audio_file, accomp_audio_file, enst_id)
                # write audio stem
                np.save(stem_file, stem_content, allow_pickle=True, fix_imports=False)
                print(f"Created {stem_file}")

                # create (drum + accompaniment) mix audio file. r1
                os.makedirs(
                    os.path.join(base_dir, f'drummer_{i}', 'audio', 'accompaniment_mix_r1'),
                    exist_ok=True)
                accomp_mix_audio_file_r1 = os.path.join(
                    base_dir, f'drummer_{i}', 'audio', 'accompaniment_mix_r1',
                    os.path.basename(file).replace('.txt', '.wav'))
                accomp_mix_audio_r1 = stem_content['audio_array'][0] / np.max(
                    np.abs(stem_content['audio_array'][0])) * 0.75 + stem_content['audio_array'][
                        1] / np.max(np.abs(stem_content['audio_array'][1])) * 0.25
                accomp_mix_audio_r1 = accomp_mix_audio_r1 / np.max(np.abs(accomp_mix_audio_r1))
                write_wav_file(accomp_mix_audio_file_r1, accomp_mix_audio_r1, 16000)
                print(f"Created {accomp_mix_audio_file_r1}")

                # create (drum + accompaniment) mix audio file. r1
                os.makedirs(
                    os.path.join(base_dir, f'drummer_{i}', 'audio', 'accompaniment_mix_r2'),
                    exist_ok=True)
                accomp_mix_audio_file_r2 = os.path.join(
                    base_dir, f'drummer_{i}', 'audio', 'accompaniment_mix_r2',
                    os.path.basename(file).replace('.txt', '.wav'))
                accomp_mix_audio_r2 = stem_content['audio_array'][0] / np.max(
                    np.abs(stem_content['audio_array'][0])) * 0.6 + stem_content['audio_array'][
                        1] / np.max(np.abs(stem_content['audio_array'][1])) * 0.4
                accomp_mix_audio_r2 = accomp_mix_audio_r2 / np.max(np.abs(accomp_mix_audio_r2))
                write_wav_file(accomp_mix_audio_file_r2, accomp_mix_audio_r2, 16000)
                print(f"Created {accomp_mix_audio_file_r2}")
                n_frames = len(accomp_mix_audio_r2)

                # use r2 for training...
                mix_audio_file = accomp_mix_audio_file_r2
            else:
                # No unannotated accompaniment
                stem_file = None
                mix_audio_file = drum_audio_file
                n_frames = get_audio_file_info(drum_audio_file)[1]

            # Create index, this is based on dtm setup
            enst_info[enst_id] = {
                'enstdrums_id': enst_id,
                'n_frames': n_frames,
                'stem_file': stem_file,
                'mix_audio_file': mix_audio_file,
                'notes_file': notes_file,
                'note_events_file': note_events_file,
                'midi_file': ann_file.replace('.txt', '.mid'),
                'program': stem_content['program'] if 'minus-one' in file else notes['program'],
                'is_drum': stem_content['is_drum'] if 'minus-one' in file else notes['is_drum'],
            }

    # Write index
    for split in [
            'drummer_1_dtm', 'drummer_2_dtm', 'all_dtm', 'drummer_1_dtp', 'drummer_2_dtp',
            'all_dtp', 'drummer_3_dtd', 'drummer_3_dtp', 'drummer_3_dtm_r1', 'drummer_3_dtm_r2'
    ]:
        # splits for training
        file_list = {}
        i = 0
        if split == 'drummer_1_dtm':
            for enst_id in enst_ids:
                if enst_id.startswith('1_'):
                    file_list[str(i)] = enst_info[enst_id]
                    i += 1
            assert len(file_list) == 97
        elif split == 'drummer_2_dtm':
            for enst_id in enst_ids:
                if enst_id.startswith('2_'):
                    file_list[str(i)] = enst_info[enst_id]
                    i += 1
            assert len(file_list) == 105
        elif split == 'all_dtm':
            for enst_id in enst_ids:
                file_list[str(i)] = enst_info[enst_id]
                i += 1
            assert len(file_list) == 318
        elif split == 'drummer_1_dtp':
            for enst_id in enst_ids:
                if enst_id.startswith('1_'):
                    file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
                    file_list[str(i)]['stem_file'] = None
                    file_list[str(i)]['mix_audio_file'] = file_list[str(
                        i)]['mix_audio_file'].replace('accompaniment_mix_r2', 'wet_mix')
                    file_list[str(i)]['program'] = [128]
                    file_list[str(i)]['is_drum'] = [1]
                    i += 1
            assert len(file_list) == 97
        elif split == 'drummer_2_dtp':
            for enst_id in enst_ids:
                if enst_id.startswith('2_'):
                    file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
                    file_list[str(i)]['stem_file'] = None
                    file_list[str(i)]['mix_audio_file'] = file_list[str(
                        i)]['mix_audio_file'].replace('accompaniment_mix_r2', 'wet_mix')
                    file_list[str(i)]['program'] = [128]
                    file_list[str(i)]['is_drum'] = [1]
                    i += 1
            assert len(file_list) == 105
        elif split == 'all_dtp':
            for enst_id in enst_ids:
                file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
                file_list[str(i)]['stem_file'] = None
                file_list[str(i)]['mix_audio_file'] = file_list[str(i)]['mix_audio_file'].replace(
                    'accompaniment_mix_r2', 'wet_mix')
                file_list[str(i)]['program'] = [128]
                file_list[str(i)]['is_drum'] = [1]
                i += 1
            assert len(file_list) == 318
        elif split == 'drummer_3_dtd':
            for enst_id in enst_ids:
                if enst_id.startswith('3_') and len(enst_info[enst_id]['program']) == 1:
                    assert enst_info[enst_id]['stem_file'] == None
                    file_list[str(i)] = enst_info[enst_id]
                    i += 1
            assert len(file_list) == 95
        elif split == 'drummer_3_dtp':
            for enst_id in enst_ids:
                if enst_id.startswith('3_') and len(enst_info[enst_id]['program']) == 2:
                    file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
                    file_list[str(i)]['stem_file'] = None
                    # For DTP, we use the drum audio file as the mix audio file
                    file_list[str(i)]['mix_audio_file'] = file_list[str(
                        i)]['mix_audio_file'].replace('accompaniment_mix_r2', 'wet_mix')
                    file_list[str(i)]['program'] = [128]
                    file_list[str(i)]['is_drum'] = [1]
                    i += 1
            assert len(file_list) == 21
        elif split == 'drummer_3_dtm_r1':
            for enst_id in enst_ids:
                if enst_id.startswith('3_') and len(enst_info[enst_id]['program']) == 2:
                    file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
                    file_list[str(i)]['stem_file'] = None
                    file_list[str(i)]['mix_audio_file'] = file_list[str(
                        i)]['mix_audio_file'].replace('accompaniment_mix_r2',
                                                      'accompaniment_mix_r1')
                    i += 1
            assert len(file_list) == 21
        elif split == 'drummer_3_dtm_r2':
            for enst_id in enst_ids:
                if enst_id.startswith('3_') and len(enst_info[enst_id]['program']) == 2:
                    file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
                    file_list[str(i)]['stem_file'] = None
                    i += 1
            assert len(file_list) == 21

        # final check for file existence
        for k, v in file_list.items():
            if v['stem_file'] is not None:
                assert os.path.exists(v['stem_file'])
            assert os.path.exists(v['mix_audio_file'])
            assert os.path.exists(v['notes_file'])
            assert os.path.exists(v['note_events_file'])
            assert os.path.exists(v['midi_file'])

        # write json file
        output_index_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
        with open(output_index_file, 'w') as f:
            json.dump(file_list, f, indent=4)
        print(f"Created {output_index_file}")


def create_filelist_dtm_random_enstdrums16k(data_home: os.PathLike,
                                            dataset_name: str = 'enstdrums') -> None:
    # Directory and file paths
    base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
    output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
    os.makedirs(output_index_dir, exist_ok=True)

    # Load all filelist
    file_list_all_dtm_path = os.path.join(output_index_dir,
                                          f'{dataset_name}_all_dtm_file_list.json')
    file_list_all_dtp_path = os.path.join(output_index_dir,
                                          f'{dataset_name}_all_dtp_file_list.json')

    # Collect dtm tracks
    with open(file_list_all_dtm_path, 'r') as f:
        fl = json.load(f)
    fl_dtm = {}
    i = 0
    for v in fl.values():
        if 129 in v['program']:
            fl_dtm[i] = copy.deepcopy(v)
            i += 1
    # Collect dtd tracks
    fl_dtd = {}
    i = 0
    for v in fl.values():
        if 129 not in v['program']:
            fl_dtd[i] = copy.deepcopy(v)
            i += 1

    # Split: 70, 15, 15
    # rand_idx = np.random.permutation(len(fl_dtm))
    idx = {}
    idx['train_dtm'] = [
        47, 58, 14, 48, 60, 44, 34, 31, 5, 62, 46, 12, 9, 26, 57, 11, 16, 22, 33, 3, 6, 55, 50, 32,
        52, 53, 10, 28, 24, 41, 63, 51, 43, 49, 54, 15, 20, 1, 27, 2, 23, 45, 38, 37
    ]
    idx['validation_dtm'] = [39, 4, 19, 59, 61, 17, 56, 36, 29, 0]
    idx['test_dtm'] = [18, 7, 42, 25, 40, 8, 30, 21, 13, 35]
    idx['train_dtp'] = idx['train_dtm']
    idx['validation_dtp'] = idx['validation_dtm']
    idx['test_dtp'] = idx['test_dtm']

    for split in [
            'train_dtm',
            'validation_dtm',
            'test_dtm',
            'train_dtp',
            'validation_dtp',
            'test_dtp',
            'all_dtd',
    ]:
        file_list = {}
        i = 0
        if 'dtm' in split:
            for k, v in fl_dtm.items():
                if int(k) in idx[split]:
                    file_list[i] = copy.deepcopy(v)
                    i += 1
            if split == 'test_dtm' or split == 'validation_dtm':
                # add r1 mix tracks
                for k, v in fl_dtm.items():
                    if int(k) in idx[split]:
                        _v = copy.deepcopy(v)
                        _v['mix_audio_file'] = _v['mix_audio_file'].replace(
                            'accompaniment_mix_r2', 'accompaniment_mix_r1')
                        file_list[i] = _v
                        i += 1
        elif 'dtp' in split:
            for k, v in fl_dtm.items():
                if int(k) in idx[split]:
                    _v = copy.deepcopy(v)
                    _v['stem_file'] = None
                    _v['mix_audio_file'] = _v['mix_audio_file'].replace(
                        'accompaniment_mix_r2', 'wet_mix')
                    _v['program'] = [128]  # bug fixed..
                    _v['is_drum'] = [1]  # bug fixed..
                    file_list[i] = _v
                    i += 1
        elif 'dtd' in split:
            for k, v in fl_dtd.items():
                file_list[i] = copy.deepcopy(v)
                i += 1
        else:
            raise ValueError(f'Unknown split: {split}')

        output_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
        with open(output_file, 'w') as f:
            json.dump(file_list, f, indent=4)
        print(f'Created {output_file}')