File size: 19,617 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
""" preprocess_enstdrums.py """
import os
import re
import glob
import copy
import json
import numpy as np
from typing import Dict
from utils.note_event_dataclasses import Note
from utils.audio import get_audio_file_info, load_audio_file, write_wav_file
from utils.midi import note_event2midi
from utils.note2event import note2note_event, sort_notes, validate_notes, trim_overlapping_notes, mix_notes
from config.vocabulary import ENST_DRUM_NOTES
DRUM_OFFSET = 0.01
def create_enst_audio_stem(drum_audio_file, accomp_audio_file, enst_id) -> Dict:
program = [128, 129]
is_drum = [1, 0]
audio_tracks = [] # multi-channel audio array (C, T)
drum_audio = load_audio_file(drum_audio_file, dtype=np.int16) / 2**15 # returns bytes
audio_tracks.append(drum_audio.astype(np.float16))
accomp_audio = load_audio_file(accomp_audio_file, dtype=np.int16) / 2**15 # returns bytes
audio_tracks.append(accomp_audio.astype(np.float16))
max_length = max(len(drum_audio), len(accomp_audio))
# collate all the audio tracks into a single array
n_tracks = 2
audio_array = np.zeros((n_tracks, max_length), dtype=np.float16)
for j, audio in enumerate(audio_tracks):
audio_array[j, :len(audio)] = audio
stem_content = {
'enstdrums_id': enst_id,
'program': program,
'is_drum': is_drum,
'n_frames': max_length, # int
'audio_array': audio_array # (n_tracks, n_frames)
}
return stem_content
def create_note_note_event_midi_from_enst_annotation(ann_file, enst_id):
"""
Args:
ann_file: 'path/to/annotation.txt'
enst_id: str
Returns:
notes: List[Note]
note_events: List[NoteEvent]
midi: List[List[int]]
"""
# Read the text file and split each line into timestamp and drum instrument name
with open(ann_file, 'r') as f:
lines = f.readlines() # ignore additional annotations like rc2, sd-
anns = [(float(line.split()[0]), re.sub('[^a-zA-Z]', '', line.split()[1])) for line in lines]
# Convert ann to notes by ENST_DRUM_NOTES vocabulary
notes = []
for time, drum_name in anns:
if drum_name not in ENST_DRUM_NOTES.keys():
raise ValueError(f"Drum name {drum_name} is not in ENST_DRUM_NOTES")
notes.append(
Note(
is_drum=True,
program=128,
onset=float(time),
offset=float(time) + DRUM_OFFSET,
pitch=ENST_DRUM_NOTES[drum_name][0],
velocity=1))
notes = sort_notes(notes)
notes = validate_notes(notes)
notes = trim_overlapping_notes(notes)
note_events = note2note_event(notes)
# Write midi file
midi_file = ann_file.replace('.txt', '.mid')
note_event2midi(note_events, midi_file)
print(f"Created {midi_file}")
program = [128]
is_drum = [1]
return { # notes
'enstdrums_id': enst_id,
'program': program,
'is_drum': is_drum,
'duration_sec': note_events[-1].time,
'notes': notes,
}, { # note_events
'enstdrums_id': enst_id,
'program': program,
'is_drum': is_drum,
'duration_sec': note_events[-1].time,
'note_events': note_events,
}
def preprocess_enstdrums16k(data_home: os.PathLike, dataset_name='enstdrums') -> None:
"""
Some tracks ('minus-one' in the file name) of ENST-drums contain accompaniments.
'stem file' will contain these accompaniments. 'mix_audio_file' will contain the
mix of the drums and accompaniments.
Splits:
- drummer_1, drummer_2, drummer_3, all
- drummer3_dtd, drummer3_dtp, drummer3_dtm_r1, drummer3_dtm_r2 (for validation/test)
DTD means drum track only, DTP means drum track plus percussions, DTM means
drum track plus music.
DTM r1 and r2 are two different versions of the mixing tracks derived from listening
test in [Gillet 2008, Paulus 2009], and used in [Wu 2018].
r1 uses 1:3 ratio of accompaniment to drums, and r2 uses 2:3 ratio.
O. Gillet and G. Richard, “Transcription and separation of drum signals from polyphonic music,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 16, no. 3, pp. 529–540, Mar. 2008.
J. Paulus and A. Klapuri, “Drum sound detection in polyphonic mu- sic with hidden Markov models,”
EURASIP J. Audio, Speech, Music Process., vol. 2009, no. 14, 2009, Art. no. 14.
C. -W. Wu et al., "A Review of Automatic Drum Transcription,"
IEEE/ACM TASLP, vol. 26, no. 9, pp. 1457-1483, Sept. 2018,
Writes:
- {dataset_name}_{split}_file_list.json: a dictionary with the following keys:
{
index:
{
'enstdrums_id': {drummer_id}_{3-digit-track-id}
'n_frames': (int),
'stem_file': Dict of stem audio file with metadata,
'mix_audio_file': 'path/to/mix.wav',
'notes_file': 'path/to/notes.npy',
'note_events_file': 'path/to/note_events.npy',
'midi_file': 'path/to/midi.mid',
'program': List[int], # 128 for drums, 129 for unannotated (accompaniment)
'is_drum': List[int], # 0 or 1
}
}
"""
# Directory and file path
base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
os.makedirs(output_index_dir, exist_ok=True)
# Gather info
enst_ids = []
enst_info = {}
for i in [1, 2, 3]:
drummer_files = sorted(
glob.glob(os.path.join(base_dir, f'drummer_{i}', 'annotation/*.txt')))
for file in drummer_files:
track_id = os.path.basename(file).split('_')[0]
enst_id = f'{i}_{track_id}'
enst_ids.append(enst_id)
# Create notes, note_events, and MIDI from annotation
ann_file = file
assert os.path.exists(ann_file), f'{ann_file} does not exist'
notes, note_events = create_note_note_event_midi_from_enst_annotation(ann_file, enst_id)
notes_file = ann_file.replace('.txt', '_notes.npy')
note_events_file = ann_file.replace('.txt', '_note_events.npy')
np.save(notes_file, notes, allow_pickle=True, fix_imports=False)
print(f"Created {notes_file}")
np.save(note_events_file, note_events, allow_pickle=True, fix_imports=False)
print(f"Created {note_events_file}")
# Create stem file from audio for accompaniment
drum_audio_file = os.path.join(base_dir, f'drummer_{i}', 'audio', 'wet_mix',
os.path.basename(file).replace('.txt', '.wav'))
assert os.path.exists(drum_audio_file), f'{drum_audio_file} does not exist'
if 'minus-one' in file: # unannotated accompaniment exists
# 129: Unannotated accompaniment exists
accomp_audio_file = os.path.join(base_dir, f'drummer_{i}', 'audio', 'accompaniment',
os.path.basename(file).replace('.txt', '.wav'))
assert os.path.exists(accomp_audio_file), f'{accomp_audio_file} does not exist'
os.makedirs(os.path.join(base_dir, f'drummer_{i}', 'audio', 'stem'), exist_ok=True)
stem_file = os.path.join(base_dir, f'drummer_{i}', 'audio', 'stem',
os.path.basename(file).replace('.txt', '_stem.npy'))
stem_content = create_enst_audio_stem(drum_audio_file, accomp_audio_file, enst_id)
# write audio stem
np.save(stem_file, stem_content, allow_pickle=True, fix_imports=False)
print(f"Created {stem_file}")
# create (drum + accompaniment) mix audio file. r1
os.makedirs(
os.path.join(base_dir, f'drummer_{i}', 'audio', 'accompaniment_mix_r1'),
exist_ok=True)
accomp_mix_audio_file_r1 = os.path.join(
base_dir, f'drummer_{i}', 'audio', 'accompaniment_mix_r1',
os.path.basename(file).replace('.txt', '.wav'))
accomp_mix_audio_r1 = stem_content['audio_array'][0] / np.max(
np.abs(stem_content['audio_array'][0])) * 0.75 + stem_content['audio_array'][
1] / np.max(np.abs(stem_content['audio_array'][1])) * 0.25
accomp_mix_audio_r1 = accomp_mix_audio_r1 / np.max(np.abs(accomp_mix_audio_r1))
write_wav_file(accomp_mix_audio_file_r1, accomp_mix_audio_r1, 16000)
print(f"Created {accomp_mix_audio_file_r1}")
# create (drum + accompaniment) mix audio file. r1
os.makedirs(
os.path.join(base_dir, f'drummer_{i}', 'audio', 'accompaniment_mix_r2'),
exist_ok=True)
accomp_mix_audio_file_r2 = os.path.join(
base_dir, f'drummer_{i}', 'audio', 'accompaniment_mix_r2',
os.path.basename(file).replace('.txt', '.wav'))
accomp_mix_audio_r2 = stem_content['audio_array'][0] / np.max(
np.abs(stem_content['audio_array'][0])) * 0.6 + stem_content['audio_array'][
1] / np.max(np.abs(stem_content['audio_array'][1])) * 0.4
accomp_mix_audio_r2 = accomp_mix_audio_r2 / np.max(np.abs(accomp_mix_audio_r2))
write_wav_file(accomp_mix_audio_file_r2, accomp_mix_audio_r2, 16000)
print(f"Created {accomp_mix_audio_file_r2}")
n_frames = len(accomp_mix_audio_r2)
# use r2 for training...
mix_audio_file = accomp_mix_audio_file_r2
else:
# No unannotated accompaniment
stem_file = None
mix_audio_file = drum_audio_file
n_frames = get_audio_file_info(drum_audio_file)[1]
# Create index, this is based on dtm setup
enst_info[enst_id] = {
'enstdrums_id': enst_id,
'n_frames': n_frames,
'stem_file': stem_file,
'mix_audio_file': mix_audio_file,
'notes_file': notes_file,
'note_events_file': note_events_file,
'midi_file': ann_file.replace('.txt', '.mid'),
'program': stem_content['program'] if 'minus-one' in file else notes['program'],
'is_drum': stem_content['is_drum'] if 'minus-one' in file else notes['is_drum'],
}
# Write index
for split in [
'drummer_1_dtm', 'drummer_2_dtm', 'all_dtm', 'drummer_1_dtp', 'drummer_2_dtp',
'all_dtp', 'drummer_3_dtd', 'drummer_3_dtp', 'drummer_3_dtm_r1', 'drummer_3_dtm_r2'
]:
# splits for training
file_list = {}
i = 0
if split == 'drummer_1_dtm':
for enst_id in enst_ids:
if enst_id.startswith('1_'):
file_list[str(i)] = enst_info[enst_id]
i += 1
assert len(file_list) == 97
elif split == 'drummer_2_dtm':
for enst_id in enst_ids:
if enst_id.startswith('2_'):
file_list[str(i)] = enst_info[enst_id]
i += 1
assert len(file_list) == 105
elif split == 'all_dtm':
for enst_id in enst_ids:
file_list[str(i)] = enst_info[enst_id]
i += 1
assert len(file_list) == 318
elif split == 'drummer_1_dtp':
for enst_id in enst_ids:
if enst_id.startswith('1_'):
file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
file_list[str(i)]['stem_file'] = None
file_list[str(i)]['mix_audio_file'] = file_list[str(
i)]['mix_audio_file'].replace('accompaniment_mix_r2', 'wet_mix')
file_list[str(i)]['program'] = [128]
file_list[str(i)]['is_drum'] = [1]
i += 1
assert len(file_list) == 97
elif split == 'drummer_2_dtp':
for enst_id in enst_ids:
if enst_id.startswith('2_'):
file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
file_list[str(i)]['stem_file'] = None
file_list[str(i)]['mix_audio_file'] = file_list[str(
i)]['mix_audio_file'].replace('accompaniment_mix_r2', 'wet_mix')
file_list[str(i)]['program'] = [128]
file_list[str(i)]['is_drum'] = [1]
i += 1
assert len(file_list) == 105
elif split == 'all_dtp':
for enst_id in enst_ids:
file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
file_list[str(i)]['stem_file'] = None
file_list[str(i)]['mix_audio_file'] = file_list[str(i)]['mix_audio_file'].replace(
'accompaniment_mix_r2', 'wet_mix')
file_list[str(i)]['program'] = [128]
file_list[str(i)]['is_drum'] = [1]
i += 1
assert len(file_list) == 318
elif split == 'drummer_3_dtd':
for enst_id in enst_ids:
if enst_id.startswith('3_') and len(enst_info[enst_id]['program']) == 1:
assert enst_info[enst_id]['stem_file'] == None
file_list[str(i)] = enst_info[enst_id]
i += 1
assert len(file_list) == 95
elif split == 'drummer_3_dtp':
for enst_id in enst_ids:
if enst_id.startswith('3_') and len(enst_info[enst_id]['program']) == 2:
file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
file_list[str(i)]['stem_file'] = None
# For DTP, we use the drum audio file as the mix audio file
file_list[str(i)]['mix_audio_file'] = file_list[str(
i)]['mix_audio_file'].replace('accompaniment_mix_r2', 'wet_mix')
file_list[str(i)]['program'] = [128]
file_list[str(i)]['is_drum'] = [1]
i += 1
assert len(file_list) == 21
elif split == 'drummer_3_dtm_r1':
for enst_id in enst_ids:
if enst_id.startswith('3_') and len(enst_info[enst_id]['program']) == 2:
file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
file_list[str(i)]['stem_file'] = None
file_list[str(i)]['mix_audio_file'] = file_list[str(
i)]['mix_audio_file'].replace('accompaniment_mix_r2',
'accompaniment_mix_r1')
i += 1
assert len(file_list) == 21
elif split == 'drummer_3_dtm_r2':
for enst_id in enst_ids:
if enst_id.startswith('3_') and len(enst_info[enst_id]['program']) == 2:
file_list[str(i)] = copy.deepcopy(enst_info[enst_id])
file_list[str(i)]['stem_file'] = None
i += 1
assert len(file_list) == 21
# final check for file existence
for k, v in file_list.items():
if v['stem_file'] is not None:
assert os.path.exists(v['stem_file'])
assert os.path.exists(v['mix_audio_file'])
assert os.path.exists(v['notes_file'])
assert os.path.exists(v['note_events_file'])
assert os.path.exists(v['midi_file'])
# write json file
output_index_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
with open(output_index_file, 'w') as f:
json.dump(file_list, f, indent=4)
print(f"Created {output_index_file}")
def create_filelist_dtm_random_enstdrums16k(data_home: os.PathLike,
dataset_name: str = 'enstdrums') -> None:
# Directory and file paths
base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
os.makedirs(output_index_dir, exist_ok=True)
# Load all filelist
file_list_all_dtm_path = os.path.join(output_index_dir,
f'{dataset_name}_all_dtm_file_list.json')
file_list_all_dtp_path = os.path.join(output_index_dir,
f'{dataset_name}_all_dtp_file_list.json')
# Collect dtm tracks
with open(file_list_all_dtm_path, 'r') as f:
fl = json.load(f)
fl_dtm = {}
i = 0
for v in fl.values():
if 129 in v['program']:
fl_dtm[i] = copy.deepcopy(v)
i += 1
# Collect dtd tracks
fl_dtd = {}
i = 0
for v in fl.values():
if 129 not in v['program']:
fl_dtd[i] = copy.deepcopy(v)
i += 1
# Split: 70, 15, 15
# rand_idx = np.random.permutation(len(fl_dtm))
idx = {}
idx['train_dtm'] = [
47, 58, 14, 48, 60, 44, 34, 31, 5, 62, 46, 12, 9, 26, 57, 11, 16, 22, 33, 3, 6, 55, 50, 32,
52, 53, 10, 28, 24, 41, 63, 51, 43, 49, 54, 15, 20, 1, 27, 2, 23, 45, 38, 37
]
idx['validation_dtm'] = [39, 4, 19, 59, 61, 17, 56, 36, 29, 0]
idx['test_dtm'] = [18, 7, 42, 25, 40, 8, 30, 21, 13, 35]
idx['train_dtp'] = idx['train_dtm']
idx['validation_dtp'] = idx['validation_dtm']
idx['test_dtp'] = idx['test_dtm']
for split in [
'train_dtm',
'validation_dtm',
'test_dtm',
'train_dtp',
'validation_dtp',
'test_dtp',
'all_dtd',
]:
file_list = {}
i = 0
if 'dtm' in split:
for k, v in fl_dtm.items():
if int(k) in idx[split]:
file_list[i] = copy.deepcopy(v)
i += 1
if split == 'test_dtm' or split == 'validation_dtm':
# add r1 mix tracks
for k, v in fl_dtm.items():
if int(k) in idx[split]:
_v = copy.deepcopy(v)
_v['mix_audio_file'] = _v['mix_audio_file'].replace(
'accompaniment_mix_r2', 'accompaniment_mix_r1')
file_list[i] = _v
i += 1
elif 'dtp' in split:
for k, v in fl_dtm.items():
if int(k) in idx[split]:
_v = copy.deepcopy(v)
_v['stem_file'] = None
_v['mix_audio_file'] = _v['mix_audio_file'].replace(
'accompaniment_mix_r2', 'wet_mix')
_v['program'] = [128] # bug fixed..
_v['is_drum'] = [1] # bug fixed..
file_list[i] = _v
i += 1
elif 'dtd' in split:
for k, v in fl_dtd.items():
file_list[i] = copy.deepcopy(v)
i += 1
else:
raise ValueError(f'Unknown split: {split}')
output_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
with open(output_file, 'w') as f:
json.dump(file_list, f, indent=4)
print(f'Created {output_file}')
|