File size: 9,538 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
""" data_modules.py """
from typing import Optional, Dict, List, Any
import os
import numpy as np
from pytorch_lightning import LightningDataModule
from pytorch_lightning.utilities import CombinedLoader
from utils.datasets_train import get_cache_data_loader
from utils.datasets_eval import get_eval_dataloader
from utils.datasets_helper import create_merged_train_dataset_info, get_list_of_weighted_random_samplers
from utils.task_manager import TaskManager
from config.config import shared_cfg
from config.config import audio_cfg as default_audio_cfg
from config.data_presets import data_preset_single_cfg, data_preset_multi_cfg


class AMTDataModule(LightningDataModule):

    def __init__(
            self,
            data_home: Optional[os.PathLike] = None,
            data_preset_multi: Dict[str, Any] = {
                "presets": ["musicnet_mt3_synth_only"],
            },  # only allowing multi_preset_cfg. single_preset_cfg should be converted to multi_preset_cfg
            task_manager: TaskManager = TaskManager(task_name="mt3_full_plus"),
            train_num_samples_per_epoch: Optional[int] = None,
            train_random_amp_range: List[float] = [0.6, 1.2],
            train_stem_iaug_prob: Optional[float] = 0.7,
            train_stem_xaug_policy: Optional[Dict] = {
                "max_k": 3,
                "tau": 0.3,
                "alpha": 1.0,
                "max_subunit_stems": 12,  # the number of subunit stems to be reduced to this number of stems
                "p_include_singing":
                    0.8,  # probability of including singing for cross augmented examples. if None, use base probaility.
                "no_instr_overlap": True,
                "no_drum_overlap": True,
                "uhat_intra_stem_augment": True,
            },
            train_pitch_shift_range: Optional[List[int]] = None,
            audio_cfg: Optional[Dict] = None) -> None:
        super().__init__()

        # check path existence
        if data_home is None:
            data_home = shared_cfg["PATH"]["data_home"]
        if os.path.exists(data_home):
            self.data_home = data_home
        else:
            raise ValueError(f"Invalid data_home: {data_home}")
        self.preset_multi = data_preset_multi
        self.preset_singles = []
        # e.g. [{"dataset_name": ..., "train_split": ..., "validation_split":...,}, {...}]
        for dp in self.preset_multi["presets"]:
            if dp not in data_preset_single_cfg.keys():
                raise ValueError("Invalid data_preset")
            self.preset_singles.append(data_preset_single_cfg[dp])

        # task manager
        self.task_manager = task_manager

        # train num samples per epoch, passed to the sampler
        self.train_num_samples_per_epoch = train_num_samples_per_epoch
        assert shared_cfg["BSZ"]["train_local"] % shared_cfg["BSZ"]["train_sub"] == 0
        self.num_train_samplers = shared_cfg["BSZ"]["train_local"] // shared_cfg["BSZ"]["train_sub"]

        # train augmentation parameters
        self.train_random_amp_range = train_random_amp_range
        self.train_stem_iaug_prob = train_stem_iaug_prob
        self.train_stem_xaug_policy = train_stem_xaug_policy
        self.train_pitch_shift_range = train_pitch_shift_range

        # train data info
        self.train_data_info = None  # to be set in setup()

        # validation/test max num of files
        self.val_max_num_files = data_preset_multi.get("val_max_num_files", None)
        self.test_max_num_files = data_preset_multi.get("test_max_num_files", None)

        # audio config
        self.audio_cfg = audio_cfg if audio_cfg is not None else default_audio_cfg

    def set_merged_train_data_info(self) -> None:
        """Collect train datasets and create info...

        self.train_dataset_info = {
            "n_datasets": 0,
            "n_notes_per_dataset": [],
            "n_files_per_dataset": [],
            "dataset_names": [],  # dataset names by order of merging file lists
            "train_split_names": [],  # train split names by order of merging file lists
            "index_ranges": [],  # index ranges of each dataset in the merged file list
            "dataset_weights": [],  # pre-defined list of dataset weights for sampling, if available
            "merged_file_list": {},
        }
        """
        self.train_data_info = create_merged_train_dataset_info(self.preset_multi)
        print(
            f"AMTDataModule: Added {len(self.train_data_info['merged_file_list'])} files from {self.train_data_info['n_datasets']} datasets to the training set."
        )

    def setup(self, stage: str):
        """
        Prepare data args for the dataloaders to be used on each stage.
        `stage` is automatically passed by pytorch lightning Trainer.
        """
        if stage == "fit":
            # Set up train data info
            self.set_merged_train_data_info()

            # Distributed Weighted random sampler for training
            actual_train_num_samples_per_epoch = self.train_num_samples_per_epoch // shared_cfg["BSZ"][
                "train_local"] if self.train_num_samples_per_epoch else None
            samplers = get_list_of_weighted_random_samplers(num_samplers=self.num_train_samplers,
                                                            dataset_weights=self.train_data_info["dataset_weights"],
                                                            dataset_index_ranges=self.train_data_info["index_ranges"],
                                                            num_samples_per_epoch=actual_train_num_samples_per_epoch)
            # Train dataloader arguments
            self.train_data_args = []
            for sampler in samplers:
                self.train_data_args.append({
                    "dataset_name": None,
                    "split": None,
                    "file_list": self.train_data_info["merged_file_list"],
                    "sub_batch_size": shared_cfg["BSZ"]["train_sub"],
                    "task_manager": self.task_manager,
                    "random_amp_range": self.train_random_amp_range,  # "0.1,0.5
                    "stem_iaug_prob": self.train_stem_iaug_prob,
                    "stem_xaug_policy": self.train_stem_xaug_policy,
                    "pitch_shift_range": self.train_pitch_shift_range,
                    "shuffle": True,
                    "sampler": sampler,
                    "audio_cfg": self.audio_cfg,
                })

            # Validation dataloader arguments
            self.val_data_args = []
            for preset_single in self.preset_singles:
                if preset_single["validation_split"] != None:
                    self.val_data_args.append({
                        "dataset_name": preset_single["dataset_name"],
                        "split": preset_single["validation_split"],
                        "task_manager": self.task_manager,
                        # "tokenizer": self.task_manager.get_tokenizer(),
                        "max_num_files": self.val_max_num_files,
                        "audio_cfg": self.audio_cfg,
                    })

        if stage == "test":
            self.test_data_args = []
            for preset_single in self.preset_singles:
                if preset_single["test_split"] != None:
                    self.test_data_args.append({
                        "dataset_name": preset_single["dataset_name"],
                        "split": preset_single["test_split"],
                        "task_manager": self.task_manager,
                        "max_num_files": self.test_max_num_files,
                        "audio_cfg": self.audio_cfg,
                    })

    def train_dataloader(self) -> Any:
        loaders = {}
        for i, args_dict in enumerate(self.train_data_args):
            loaders[f"data_loader_{i}"] = get_cache_data_loader(**args_dict, dataloader_config=shared_cfg["DATAIO"])
        return CombinedLoader(loaders, mode="min_size")  # size is always identical

    def val_dataloader(self) -> Any:
        loaders = {}
        for args_dict in self.val_data_args:
            dataset_name = args_dict["dataset_name"]
            loaders[dataset_name] = get_eval_dataloader(**args_dict, dataloader_config=shared_cfg["DATAIO"])
        return loaders

    def test_dataloader(self) -> Any:
        loaders = {}
        for args_dict in self.test_data_args:
            dataset_name = args_dict["dataset_name"]
            loaders[dataset_name] = get_eval_dataloader(**args_dict, dataloader_config=shared_cfg["DATAIO"])
        return loaders

    """CombinedLoader in "sequential" mode returns dataloader_idx to the
       trainer, which is used to get the dataset name in the logger. """

    @property
    def num_val_dataloaders(self) -> int:
        return len(self.val_data_args)

    @property
    def num_test_dataloaders(self) -> int:
        return len(self.test_data_args)

    def get_val_dataset_name(self, dataloader_idx: int) -> str:
        return self.val_data_args[dataloader_idx]["dataset_name"]

    def get_test_dataset_name(self, dataloader_idx: int) -> str:
        return self.test_data_args[dataloader_idx]["dataset_name"]