File size: 9,295 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
from typing import Literal
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange


def init_layer(layer: nn.Module) -> None:
    """Initialize a Linear or Convolutional layer."""
    nn.init.xavier_uniform_(layer.weight)
    if hasattr(layer, "bias") and layer.bias is not None:
        layer.bias.data.zero_()


def init_bn(bn: nn.Module) -> None:
    """Initialize a Batchnorm layer."""
    bn.bias.data.zero_()
    bn.weight.data.fill_(1.0)
    bn.running_mean.data.zero_()
    bn.running_var.data.fill_(1.0)


def act(x: torch.Tensor, activation: str) -> torch.Tensor:
    """Activation function."""
    funcs = {"relu": F.relu_, "leaky_relu": lambda x: F.leaky_relu_(x, 0.01), "swish": lambda x: x * torch.sigmoid(x)}
    return funcs.get(activation, lambda x: Exception("Incorrect activation!"))(x)


class Res2DAVPBlock(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, avp_kernel_size, activation):
        """Convolutional residual block modified fromr bytedance/music_source_separation."""
        super().__init__()

        padding = kernel_size[0] // 2, kernel_size[1] // 2

        self.activation = activation
        self.bn1, self.bn2 = nn.BatchNorm2d(out_channels), nn.BatchNorm2d(out_channels)

        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, bias=False)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, padding=padding, bias=False)

        self.is_shortcut = in_channels != out_channels
        if self.is_shortcut:
            self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=(1, 1))

        self.avp = nn.AvgPool2d(avp_kernel_size)
        self.init_weights()

    def init_weights(self):
        for m in [self.conv1, self.conv2] + ([self.shortcut] if self.is_shortcut else []):
            init_layer(m)
        for m in [self.bn1, self.bn2]:
            init_bn(m)

    def forward(self, x):
        origin = x
        x = act(self.bn1(self.conv1(x)), self.activation)
        x = self.bn2(self.conv2(x))
        x += self.shortcut(origin) if self.is_shortcut else origin
        x = act(x, self.activation)
        return self.avp(x)


class PreEncoderBlockRes3B(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=(3, 3), avp_kernerl_size=(1, 2), activation='relu'):
        """Pre-Encoder with 3 Res2DAVPBlocks."""
        super().__init__()

        self.blocks = nn.ModuleList([
            Res2DAVPBlock(in_channels if i == 0 else out_channels, out_channels, kernel_size, avp_kernerl_size,
                          activation) for i in range(3)
        ])

    def forward(self, x):  # (B, T, F)
        x = rearrange(x, 'b t f -> b 1 t f')
        for block in self.blocks:
            x = block(x)
        return rearrange(x, 'b c t f -> b t f c')


def test_res3b():
    # mel-spec input
    x = torch.randn(2, 256, 512)  # (B, T, F)
    pre = PreEncoderBlockRes3B(in_channels=1, out_channels=128)
    x = pre(x)  # (2, 256, 64, 128): B T,F,C

    x = torch.randn(2, 110, 1024)  # (B, T, F)
    pre = PreEncoderBlockRes3B(in_channels=1, out_channels=128)
    x = pre(x)  # (2, 110, 128, 128): B,T,F,C


# ====================================================================================================================
# PreEncoderBlockHFTT: hFT-Transformer-like Pre-encoder
# ====================================================================================================================
class PreEncoderBlockHFTT(nn.Module):

    def __init__(self, margin_pre=15, margin_post=16) -> None:
        """Pre-Encoder with hFT-Transformer-like convolutions."""
        super().__init__()

        self.margin_pre, self.margin_post = margin_pre, margin_post
        self.conv = nn.Conv2d(1, 4, kernel_size=(1, 5), padding='same', padding_mode='zeros')
        self.emb_freq = nn.Linear(128, 128)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (B, T, F)
        x = rearrange(x, 'b t f -> b 1 f t')  # (B, 1, F, T) or (2, 1, 128, 110)
        x = F.pad(x, (self.margin_pre, self.margin_post), value=1e-7)  # (B, 1, F, T+margin) or (2,1,128,141)
        x = self.conv(x)  # (B, C, F, T+margin) or (2, 4, 128, 141)
        x = x.unfold(dimension=3, size=32, step=1)  # (B, c1, T, F, c2) or (2, 4, 128, 110, 32)
        x = rearrange(x, 'b c1 f t c2 -> b t f (c1 c2)')  # (B, T, F, C) or (2, 110, 128, 128)
        return self.emb_freq(x)  # (B, T, F, C) or (2, 110, 128, 128)


def test_hftt():
    # from model.spectrogram import get_spectrogram_layer_from_audio_cfg
    # from config.config import audio_cfg as default_audio_cfg
    # audio_cfg = default_audio_cfg
    # audio_cfg['codec'] = 'melspec'
    # audio_cfg['hop_length'] = 300
    # audio_cfg['n_mels'] = 128
    # x = torch.randn(2, 1, 32767)
    # mspec, _ = get_spectrogram_layer_from_audio_cfg(audio_cfg)
    # x = mspec(x)
    x = torch.randn(2, 110, 128)  # (B, T, F)
    pre_enc_hftt = PreEncoderBlockHFTT()
    y = pre_enc_hftt(x)  # (2, 110, 128, 128): B, T, F, C


# ====================================================================================================================
# PreEncoderBlockRes3BHFTT: hFT-Transformer-like Pre-encoder with Res2DAVPBlock and spec input
# ====================================================================================================================
class PreEncoderBlockRes3BHFTT(nn.Module):

    def __init__(self, margin_pre: int = 15, margin_post: int = 16) -> None:
        """Pre-Encoder with hFT-Transformer-like convolutions.
        
        Args:
            margin_pre (int): padding before the input
            margin_post (int): padding after the input
            stack_dim (Literal['c', 'f']): stack dimension. channel or frequency

        """
        super().__init__()
        self.margin_pre, self.margin_post = margin_pre, margin_post
        self.res3b = PreEncoderBlockRes3B(in_channels=1, out_channels=4)
        self.emb_freq = nn.Linear(128, 128)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (B, T, F) or (2, 110, 1024), input spectrogram
        x = rearrange(x, 'b t f -> b f t')  # (2, 1024, 110): B,F,T
        x = F.pad(x, (self.margin_pre, self.margin_post), value=1e-7)  # (2, 1024, 141): B,F,T+margin
        x = rearrange(x, 'b f t -> b t f')  # (2, 141, 1024): B,T+margin,F
        x = self.res3b(x)  # (2, 141, 128, 4): B,T+margin,F,C
        x = x.unfold(dimension=1, size=32, step=1)  # (B, T, F, C1, C2) or (2, 110, 128, 4, 32)
        x = rearrange(x, 'b t f c1 c2 -> b t f (c1 c2)')  # (B, T, F, C) or (2, 110, 128, 128)
        return self.emb_freq(x)  # (B, T, F, C) or (2, 110, 128, 128)


def test_res3b_hftt():
    # from model.spectrogram import get_spectrogram_layer_from_audio_cfg
    # from config.config import audio_cfg as default_audio_cfg
    # audio_cfg = default_audio_cfg
    # audio_cfg['codec'] = 'spec'
    # audio_cfg['hop_length'] = 300
    # x = torch.randn(2, 1, 32767)
    # spec, _ = get_spectrogram_layer_from_audio_cfg(audio_cfg)
    # x = spec(x)  # (2, 110, 1024): B,T,F
    x = torch.randn(2, 110, 1024)  # (B, T, F)
    pre_enc_res3b_hftt = PreEncoderBlockRes3BHFTT()
    y = pre_enc_res3b_hftt(x)  # (2, 110, 128, 128): B, T, F, C


# # ====================================================================================================================
# # PreEncoderBlockConv1D: Pre-encoder without activation, with Melspec input
# # ====================================================================================================================
# class PreEncoderBlockConv1D(nn.Module):

#     def __init__(self,
#                  in_channels,
#                  out_channels,
#                  kernel_size=3) -> None:
#         """Pre-Encoder with 1D convolution."""
#         super().__init__()
#         self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=1)
#         self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=kernel_size, stride=1)

#     def forward(self, x: torch.Tensor) -> torch.Tensor:
#         # x: (B, T, F) or (2, 128, 256), input melspec
#         x = rearrange(x, 'b t f -> b f t')  # (2, 256, 128): B,F,T
#         x = self.conv1(x)  # (2, 128, 128): B,F,T
#         return rearrange(x, 'b f t -> b t f')  # (2, 110, 128): B,T,F

# def test_conv1d():
#     # from model.spectrogram import get_spectrogram_layer_from_audio_cfg
#     # from config.config import audio_cfg as default_audio_cfg
#     # audio_cfg = default_audio_cfg
#     # audio_cfg['codec'] = 'melspec'
#     # audio_cfg['hop_length'] = 256
#     # audio_cfg['n_mels'] = 512
#     # x = torch.randn(2, 1, 32767)
#     # mspec, _ = get_spectrogram_layer_from_audio_cfg(audio_cfg)
#     # x = mspec(x)
#     x = torch.randn(2, 128, 128)  # (B, T, F)
#     pre_enc_conv1d = PreEncoderBlockConv1D(in_channels=1, out_channels=128)
#     y = pre_enc_conv1d(x)  # (2, 110, 128, 128): B, T, F, C