File size: 14,198 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
"""init_train.py"""
from typing import Tuple, Literal, Any
from copy import deepcopy
import os
import argparse
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.utilities import rank_zero_only
from config.config import shared_cfg as default_shared_cfg
from config.config import audio_cfg as default_audio_cfg
from config.config import model_cfg as default_model_cfg
from config.config import DEEPSPEED_CFG
def initialize_trainer(args: argparse.Namespace,
stage: Literal['train', 'test'] = 'train') -> Tuple[pl.Trainer, WandbLogger, dict]:
"""Initialize trainer and logger"""
shared_cfg = deepcopy(default_shared_cfg)
# create save dir
os.makedirs(shared_cfg["WANDB"]["save_dir"], exist_ok=True)
# collecting specific checkpoint from exp_id with extension (@xxx where xxx is checkpoint name)
if "@" in args.exp_id:
args.exp_id, checkpoint_name = args.exp_id.split("@")
else:
checkpoint_name = "last.ckpt"
# checkpoint dir
lightning_dir = os.path.join(shared_cfg["WANDB"]["save_dir"], args.project, args.exp_id)
# create logger
if args.wandb_mode is not None:
shared_cfg["WANDB"]["mode"] = str(args.wandb_mode)
if shared_cfg["WANDB"].get("cache_dir", None) is not None:
os.environ["WANDB_CACHE_DIR"] = shared_cfg["WANDB"].get("cache_dir")
del shared_cfg["WANDB"]["cache_dir"] # remove cache_dir from shared_cfg
wandb_logger = WandbLogger(log_model="all",
project=args.project,
id=args.exp_id,
allow_val_change=True,
**shared_cfg['WANDB'])
# check if any checkpoint exists
last_ckpt_path = os.path.join(lightning_dir, "checkpoints", checkpoint_name)
if os.path.exists(os.path.join(last_ckpt_path)):
print(f'Resuming from {last_ckpt_path}')
elif stage == 'train':
print(f'No checkpoint found in {last_ckpt_path}. Starting from scratch')
last_ckpt_path = None
else:
raise ValueError(f'No checkpoint found in {last_ckpt_path}. Quit...')
# add info
dir_info = dict(lightning_dir=lightning_dir, last_ckpt_path=last_ckpt_path)
# define checkpoint callback
checkpoint_callback = ModelCheckpoint(**shared_cfg["CHECKPOINT"],)
# define lr scheduler monitor callback
lr_monitor = LearningRateMonitor(logging_interval='step')
# deepspeed strategy
if args.strategy == 'deepspeed':
strategy = pl.strategies.DeepSpeedStrategy(config=DEEPSPEED_CFG)
# validation interval
if stage == 'train' and args.val_interval is not None:
shared_cfg["TRAINER"]["check_val_every_n_epoch"] = None
shared_cfg["TRAINER"]["val_check_interval"] = int(args.val_interval)
# define trainer
sync_batchnorm = False
if stage == 'train':
# train batch size
if args.train_batch_size is not None:
train_sub_bsz = int(args.train_batch_size[0])
train_local_bsz = int(args.train_batch_size[1])
if train_local_bsz % train_sub_bsz == 0:
shared_cfg["BSZ"]["train_sub"] = train_sub_bsz
shared_cfg["BSZ"]["train_local"] = train_local_bsz
else:
raise ValueError(
f'Local batch size {train_local_bsz} must be divisible by sub batch size {train_sub_bsz}')
# ddp strategy
if args.strategy == 'ddp':
args.strategy = 'ddp_find_unused_parameters_true' # fix for conformer or pitchshifter having unused parameter issue
# sync-batchnorm
if args.sync_batchnorm is True:
sync_batchnorm = True
train_params = dict(**shared_cfg["TRAINER"],
devices=args.num_gpus if args.num_gpus == 'auto' else int(args.num_gpus),
num_nodes=int(args.num_nodes),
strategy=strategy if args.strategy == 'deepspeed' else args.strategy,
precision=args.precision,
max_epochs=args.max_epochs if stage == 'train' else None,
max_steps=args.max_steps if stage == 'train' else -1,
logger=wandb_logger,
callbacks=[checkpoint_callback, lr_monitor],
sync_batchnorm=sync_batchnorm)
trainer = pl.trainer.trainer.Trainer(**train_params)
# Update wandb logger (for DDP)
if trainer.global_rank == 0:
wandb_logger.experiment.config.update(args, allow_val_change=True)
return trainer, wandb_logger, dir_info, shared_cfg
def update_config(args, shared_cfg, stage: Literal['train', 'test'] = 'train'):
"""Update audio/model/shared configurations with args"""
audio_cfg = default_audio_cfg
model_cfg = default_model_cfg
# Only update config when training
if stage == 'train':
# Augmentation parameters
if args.random_amp_range is not None:
shared_cfg["AUGMENTATION"]["train_random_amp_range"] = list(
(float(args.random_amp_range[0]), float(args.random_amp_range[1])))
if args.stem_iaug_prob is not None:
shared_cfg["AUGMENTATION"]["train_stem_iaug_prob"] = float(args.stem_iaug_prob)
if args.xaug_max_k is not None:
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["max_k"] = int(args.xaug_max_k)
if args.xaug_tau is not None:
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["tau"] = float(args.xaug_tau)
if args.xaug_alpha is not None:
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["alpha"] = float(args.xaug_alpha)
if args.xaug_no_instr_overlap is not None:
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["no_instr_overlap"] = bool(args.xaug_no_instr_overlap)
if args.xaug_no_drum_overlap is not None:
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["no_drum_overlap"] = bool(args.xaug_no_drum_overlap)
if args.uhat_intra_stem_augment is not None:
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["uhat_intra_stem_augment"] = bool(
args.uhat_intra_stem_augment)
if args.pitch_shift_range is not None:
if args.pitch_shift_range in [["0", "0"], [0, 0]]:
shared_cfg["AUGMENTATION"]["train_pitch_shift_range"] = None
else:
shared_cfg["AUGMENTATION"]["train_pitch_shift_range"] = list(
(int(args.pitch_shift_range[0]), int(args.pitch_shift_range[1])))
train_stem_iaug_prob = shared_cfg["AUGMENTATION"]["train_stem_iaug_prob"]
random_amp_range = shared_cfg["AUGMENTATION"]["train_random_amp_range"]
train_stem_xaug_policy = shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]
print(f'Random amp range: {random_amp_range}\n' +
f'Intra-stem augmentation probability: {train_stem_iaug_prob}\n' +
f'Stem augmentation policy: {train_stem_xaug_policy}\n' +
f'Pitch shift range: {shared_cfg["AUGMENTATION"]["train_pitch_shift_range"]}\n')
# Update audio config
if args.audio_codec != None:
assert args.audio_codec in ['spec', 'melspec']
audio_cfg["codec"] = str(args.audio_codec)
if args.hop_length != None:
audio_cfg["hop_length"] = int(args.hop_length)
if args.n_mels != None:
audio_cfg["n_mels"] = int(args.n_mels)
if args.input_frames != None:
audio_cfg["input_frames"] = int(args.input_frames)
# Update shared config
if shared_cfg["TOKENIZER"]["max_shift_steps"] == "auto":
shift_steps_ms = shared_cfg["TOKENIZER"]["shift_step_ms"]
input_frames = audio_cfg["input_frames"]
fs = audio_cfg["sample_rate"]
max_shift_steps = (input_frames / fs) // (shift_steps_ms / 1000) + 2 # 206 by default
shared_cfg["TOKENIZER"]["max_shift_steps"] = int(max_shift_steps)
# Update model config
if args.encoder_type != None:
model_cfg["encoder_type"] = str(args.encoder_type)
if args.decoder_type != None:
model_cfg["decoder_type"] = str(args.decoder_type)
if args.pre_encoder_type != "default":
model_cfg["pre_encoder_type"] = str(args.pre_encoder_type)
if args.pre_decoder_type != 'default':
model_cfg["pre_decoder_type"] = str(args.pre_decoder_type)
if args.conv_out_channels != None:
model_cfg["conv_out_channels"] = int(args.conv_out_channels)
assert isinstance(args.task_cond_decoder, bool) and isinstance(args.task_cond_encoder, bool)
model_cfg["use_task_conditional_encoder"] = args.task_cond_encoder
model_cfg["use_task_conditional_decoder"] = args.task_cond_decoder
if args.encoder_position_encoding_type != 'default':
if args.encoder_position_encoding_type in ['None', 'none', '0']:
model_cfg["encoder"][model_cfg["encoder_type"]]["position_encoding_type"] = None
elif args.encoder_position_encoding_type in [
'sinusoidal', 'rope', 'trainable', 'alibi', 'alibit', 'tkd', 'td', 'tk', 'kdt'
]:
model_cfg["encoder"][model_cfg["encoder_type"]]["position_encoding_type"] = str(
args.encoder_position_encoding_type)
else:
raise ValueError(f'Encoder PE type {args.encoder_position_encoding_type} not supported')
if args.decoder_position_encoding_type != 'default':
if args.decoder_position_encoding_type in ['None', 'none', '0']:
raise ValueError('Decoder PE type cannot be None')
elif args.decoder_position_encoding_type in ['sinusoidal', 'trainable']:
model_cfg["decoder"][model_cfg["decoder_type"]]["position_encoding_type"] = str(
args.decoder_position_encoding_type)
else:
raise ValueError(f'Decoder PE {args.decoder_position_encoding_type} not supported')
if args.tie_word_embedding is not None:
model_cfg["tie_word_embedding"] = bool(args.tie_word_embedding)
if args.d_feat != None:
model_cfg["d_feat"] = int(args.d_feat)
if args.d_latent != None:
model_cfg['encoder']['perceiver-tf']["d_latent"] = int(args.d_latent)
if args.num_latents != None:
model_cfg['encoder']['perceiver-tf']['num_latents'] = int(args.num_latents)
if args.perceiver_tf_d_model != None:
model_cfg['encoder']['perceiver-tf']['d_model'] = int(args.perceiver_tf_d_model)
if args.num_perceiver_tf_blocks != None:
model_cfg["encoder"]["perceiver-tf"]["num_blocks"] = int(args.num_perceiver_tf_blocks)
if args.num_perceiver_tf_local_transformers_per_block != None:
model_cfg["encoder"]["perceiver-tf"]["num_local_transformers_per_block"] = int(
args.num_perceiver_tf_local_transformers_per_block)
if args.num_perceiver_tf_temporal_transformers_per_block != None:
model_cfg["encoder"]["perceiver-tf"]["num_temporal_transformers_per_block"] = int(
args.num_perceiver_tf_temporal_transformers_per_block)
if args.attention_to_channel != None:
model_cfg["encoder"]["perceiver-tf"]["attention_to_channel"] = bool(args.attention_to_channel)
if args.sca_use_query_residual != None:
model_cfg["encoder"]["perceiver-tf"]["sca_use_query_residual"] = bool(args.sca_use_query_residual)
if args.layer_norm_type != None:
model_cfg["encoder"]["perceiver-tf"]["layer_norm"] = str(args.layer_norm_type)
if args.ff_layer_type != None:
model_cfg["encoder"]["perceiver-tf"]["ff_layer_type"] = str(args.ff_layer_type)
if args.ff_widening_factor != None:
model_cfg["encoder"]["perceiver-tf"]["ff_widening_factor"] = int(args.ff_widening_factor)
if args.moe_num_experts != None:
model_cfg["encoder"]["perceiver-tf"]["moe_num_experts"] = int(args.moe_num_experts)
if args.moe_topk != None:
model_cfg["encoder"]["perceiver-tf"]["moe_topk"] = int(args.moe_topk)
if args.hidden_act != None:
model_cfg["encoder"]["perceiver-tf"]["hidden_act"] = str(args.hidden_act)
if args.rotary_type != None:
assert len(
args.rotary_type
) == 3, "rotary_type must be a 3-letter string (e.g. 'ppl': 'pixel' for SCA, 'pixel' for latent, 'lang' for temporal transformer)"
model_cfg["encoder"]["perceiver-tf"]["rotary_type_sca"] = str(args.rotary_type)[0]
model_cfg["encoder"]["perceiver-tf"]["rotary_type_latent"] = str(args.rotary_type)[1]
model_cfg["encoder"]["perceiver-tf"]["rotary_type_temporal"] = str(args.rotary_type)[2]
if args.rope_apply_to_keys != None:
model_cfg["encoder"]["perceiver-tf"]["rope_apply_to_keys"] = bool(args.rope_apply_to_keys)
if args.rope_partial_pe != None:
model_cfg["encoder"]["perceiver-tf"]["rope_partial_pe"] = bool(args.rope_partial_pe)
if args.decoder_ff_layer_type != None:
model_cfg["decoder"][model_cfg["decoder_type"]]["ff_layer_type"] = str(args.decoder_ff_layer_type)
if args.decoder_ff_widening_factor != None:
model_cfg["decoder"][model_cfg["decoder_type"]]["ff_widening_factor"] = int(args.decoder_ff_widening_factor)
if args.event_length != None:
model_cfg["event_length"] = int(args.event_length)
if stage == 'train':
if args.encoder_dropout_rate != None:
model_cfg["encoder"][model_cfg["encoder_type"]]["dropout_rate"] = float(args.encoder_dropout_rate)
if args.decoder_dropout_rate != None:
model_cfg["decoder"][model_cfg["decoder_type"]]["dropout_rate"] = float(args.decoder_dropout_rate)
return shared_cfg, audio_cfg, model_cfg # return updated configs
|