Spaces:
Sleeping
Sleeping
File size: 6,666 Bytes
60451b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
'''
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
* By Junnan Li
'''
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from models.blip_pretrain import blip_pretrain
import utils
from utils import warmup_lr_schedule, step_lr_schedule
from data import create_dataset, create_sampler, create_loader
def train(model, data_loader, optimizer, epoch, device, config):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_lm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
if config['laion_path']:
data_loader.dataset.reload_laion(epoch)
data_loader.sampler.set_epoch(epoch)
for i, (image, caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if epoch==0:
warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
optimizer.zero_grad()
image = image.to(device,non_blocking=True)
# ramp up alpha in the first 2 epochs
alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader)))
loss_ita, loss_itm, loss_lm = model(image, caption, alpha = alpha)
loss = loss_ita + loss_itm + loss_lm
loss.backward()
optimizer.step()
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(loss_lm=loss_lm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating dataset")
datasets = [create_dataset('pretrain', config, min_scale=0.2)]
print('number of training samples: %d'%len(datasets[0]))
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True], num_tasks, global_rank)
data_loader = create_loader(datasets,samplers,batch_size=[config['batch_size']], num_workers=[4], is_trains=[True], collate_fns=[None])[0]
#### Model ####
print("Creating model")
model = blip_pretrain(image_size=config['image_size'], vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'],
vit_ckpt_layer=config['vit_ckpt_layer'], queue_size=config['queue_size'])
model = model.to(device)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
start_epoch = 0
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
model.load_state_dict(state_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']+1
print('resume checkpoint from %s'%args.checkpoint)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, config['max_epoch']):
step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
train_stats = train(model, data_loader, optimizer, epoch, device, config)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/pretrain.yaml')
parser.add_argument('--output_dir', default='output/Pretrain')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config) |