Spaces:
Running
Running
import gradio as gr | |
import onnxruntime as rt | |
from transformers import AutoTokenizer | |
import torch, json | |
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") | |
with open("genre_types_encoded_multi_class.json", "r") as fp: | |
encode_genre_types = json.load(fp) | |
genres = list(encode_genre_types.keys()) | |
inf_session = rt.InferenceSession('film_genre_classifier_quantized.onnx') | |
input_name = inf_session.get_inputs()[0].name | |
output_name = inf_session.get_outputs()[0].name | |
def classify_film_genre(description): | |
input_ids = tokenizer(description)['input_ids'][:512] | |
logits = inf_session.run([output_name], {input_name: [input_ids]})[0] | |
logits = torch.FloatTensor(logits) | |
probs = torch.sigmoid(logits)[0] | |
return dict(zip(genres, map(float, probs))) | |
label = gr.Label(num_top_classes=5) | |
iface = gr.Interface(fn=classify_film_genre, | |
inputs="text", | |
outputs=label, | |
title="Film Genre Classifer", | |
description=( | |
f""" | |
Instructions: | |
1. Copy and paste a movie plot from the internet. | |
2. Hit the Submit button. | |
Note: There are a total of 27 Genres to classify | |
""" | |
) | |
) | |
iface.launch(inline=False) | |