Rezuwan's picture
Update app.py
eca07af verified
import gradio as gr
import onnxruntime as rt
from transformers import AutoTokenizer
import torch, json
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
with open("genre_types_encoded_multi_class.json", "r") as fp:
encode_genre_types = json.load(fp)
genres = list(encode_genre_types.keys())
inf_session = rt.InferenceSession('film_genre_classifier_quantized.onnx')
input_name = inf_session.get_inputs()[0].name
output_name = inf_session.get_outputs()[0].name
def classify_film_genre(description):
input_ids = tokenizer(description)['input_ids'][:512]
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
logits = torch.FloatTensor(logits)
probs = torch.sigmoid(logits)[0]
return dict(zip(genres, map(float, probs)))
label = gr.Label(num_top_classes=5)
iface = gr.Interface(fn=classify_film_genre,
inputs="text",
outputs=label,
title="Film Genre Classifer",
description=(
f"""
Instructions:
1. Copy and paste a movie plot from the internet.
2. Hit the Submit button.
Note: There are a total of 27 Genres to classify
"""
)
)
iface.launch(inline=False)