Reyad-Ahmmed commited on
Commit
60ed144
·
verified ·
1 Parent(s): eeb6b15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -19
app.py CHANGED
@@ -238,28 +238,15 @@ else:
238
 
239
  #model_save_path = "./" + modelNameToUse + "_model"
240
  #tokenizer_save_path = "./" + modelNameToUse + "_tokenizer"
241
-
242
- model_save_path = "./data-timeframe_model"
243
- tokenizer_save_path = "./data-timeframe_tokenizer"
244
-
245
- # Check for specific files in the model directory
246
- model_files = os.listdir(model_save_path)
247
- model_files = [file for file in model_files]
248
- print("Specific files in model directory:", model_files)
249
-
250
- # Check for specific files in the tokenizer directory
251
- tokenizer_files = os.listdir(tokenizer_save_path)
252
- tokenizer_files = [file for file in tokenizer_files]
253
- print("Specific files in tokenizer directory:", tokenizer_files)
254
-
255
- #model_name = "Reyad-Ahmmed/hf-data-timeframe"
256
 
257
  # RobertaTokenizer.from_pretrained(model_save_path)
258
- #model = AutoModelForSequenceClassification.from_pretrained(model_name, subfolder="data-timeframe_model").to('cpu')
259
- #tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder="data-timeframe_tokenizer")
260
 
261
- model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
262
- tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
263
 
264
  #Define the label mappings (this must match the mapping used during training)
265
  label_mapping = {
 
238
 
239
  #model_save_path = "./" + modelNameToUse + "_model"
240
  #tokenizer_save_path = "./" + modelNameToUse + "_tokenizer"
241
+
242
+ model_name = "Reyad-Ahmmed/hf-data-timeframe"
 
 
 
 
 
 
 
 
 
 
 
 
 
243
 
244
  # RobertaTokenizer.from_pretrained(model_save_path)
245
+ model = AutoModelForSequenceClassification.from_pretrained(model_name, subfolder="data-timeframe_model").to('cpu')
246
+ tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder="data-timeframe_tokenizer")
247
 
248
+ #model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
249
+ #tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
250
 
251
  #Define the label mappings (this must match the mapping used during training)
252
  label_mapping = {