Spaces:
Runtime error
Runtime error
import spaces | |
import random | |
import torch | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from huggingface_hub import snapshot_download | |
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor | |
from diffusers.utils import load_image | |
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from kolors.models.controlnet import ControlNetModel | |
from diffusers import AutoencoderKL | |
from kolors.models.unet_2d_condition import UNet2DConditionModel | |
from diffusers import EulerDiscreteScheduler | |
from PIL import Image | |
from annotator.midas import MidasDetector | |
from annotator.util import resize_image, HWC3 | |
device = "cuda" | |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") | |
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth") | |
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny") | |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device) | |
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device) | |
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline( | |
vae=vae, | |
controlnet = controlnet_depth, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
force_zeros_for_empty_prompt=False | |
) | |
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline( | |
vae=vae, | |
controlnet = controlnet_canny, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
force_zeros_for_empty_prompt=False | |
) | |
def process_canny_condition(image, canny_threods=[100,200]): | |
np_image = image.copy() | |
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1]) | |
np_image = np_image[:, :, None] | |
np_image = np.concatenate([np_image, np_image, np_image], axis=2) | |
np_image = HWC3(np_image) | |
return Image.fromarray(np_image) | |
model_midas = MidasDetector() | |
def process_depth_condition_midas(img, res = 1024): | |
h,w,_ = img.shape | |
img = resize_image(HWC3(img), res) | |
result = HWC3(model_midas(img)) | |
result = cv2.resize(result, (w,h)) | |
return Image.fromarray(result) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer_depth(prompt, | |
image = None, | |
negative_prompt = "", | |
seed = 0, | |
randomize_seed = False, | |
guidance_scale = 6.0, | |
num_inference_steps = 50, | |
controlnet_conditioning_scale = 0.7, | |
control_guidance_end = 0.9, | |
strength = 1.0 | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
init_image = resize_image(image, MAX_IMAGE_SIZE) | |
pipe = pipe_depth.to("cuda") | |
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE) | |
image = pipe( | |
prompt= prompt , | |
image = init_image, | |
controlnet_conditioning_scale = controlnet_conditioning_scale, | |
control_guidance_end = control_guidance_end, | |
strength= strength , | |
control_image = condi_img, | |
negative_prompt= negative_prompt , | |
num_inference_steps= num_inference_steps, | |
guidance_scale= guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images[0] | |
return [condi_img, image] | |
def infer_canny(prompt, | |
image = None, | |
negative_prompt = "", | |
seed = 0, | |
randomize_seed = False, | |
guidance_scale = 6.0, | |
num_inference_steps = 50, | |
controlnet_conditioning_scale = 0.7, | |
control_guidance_end = 0.9, | |
strength = 1.0 | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
init_image = resize_image(image, MAX_IMAGE_SIZE) | |
pipe = pipe_canny.to("cuda") | |
condi_img = process_canny_condition(np.array(init_image)) | |
image = pipe( | |
prompt= prompt , | |
image = init_image, | |
controlnet_conditioning_scale = controlnet_conditioning_scale, | |
control_guidance_end = control_guidance_end, | |
strength= strength , | |
control_image = condi_img, | |
negative_prompt= negative_prompt , | |
num_inference_steps= num_inference_steps, | |
guidance_scale= guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images[0] | |
return [condi_img, image] | |
canny_examples = [ | |
["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K", | |
"image/woman_1.png"], | |
["全景,一只可爱的白色小狗坐在杯子里,看向镜头,动漫风格,3d渲染,辛烷值渲染", | |
"image/dog.png"] | |
] | |
depth_examples = [ | |
["新海诚风格,丰富的色彩,穿着绿色衬衫的女人站在田野里,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质", | |
"image/woman_2.png"], | |
["一只颜色鲜艳的小鸟,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K", | |
"image/bird.png"] | |
] | |
css=""" | |
#col-left { | |
margin: 0 auto; | |
max-width: 600px; | |
} | |
#col-right { | |
margin: 0 auto; | |
max-width: 750px; | |
} | |
#button { | |
color: blue; | |
} | |
""" | |
def load_description(fp): | |
with open(fp, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
with gr.Blocks(css=css) as Kolors: | |
gr.HTML(load_description("assets/title.md")) | |
with gr.Row(): | |
with gr.Column(elem_id="col-left"): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt", | |
lines=2 | |
) | |
with gr.Row(): | |
image = gr.Image(label="Image", type="pil") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
value="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=6.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=10, | |
maximum=50, | |
step=1, | |
value=30, | |
) | |
with gr.Row(): | |
controlnet_conditioning_scale = gr.Slider( | |
label="Controlnet Conditioning Scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.7, | |
) | |
control_guidance_end = gr.Slider( | |
label="Control Guidance End", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.9, | |
) | |
with gr.Row(): | |
strength = gr.Slider( | |
label="Strength", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
with gr.Row(): | |
canny_button = gr.Button("Canny", elem_id="button") | |
depth_button = gr.Button("Depth", elem_id="button") | |
with gr.Column(elem_id="col-right"): | |
result = gr.Gallery(label="Result", show_label=False, columns=2) | |
with gr.Row(): | |
gr.Examples( | |
fn = infer_canny, | |
examples = canny_examples, | |
inputs = [prompt, image], | |
outputs = [result], | |
label = "Canny" | |
) | |
with gr.Row(): | |
gr.Examples( | |
fn = infer_depth, | |
examples = depth_examples, | |
inputs = [prompt, image], | |
outputs = [result], | |
label = "Depth" | |
) | |
canny_button.click( | |
fn = infer_canny, | |
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength], | |
outputs = [result] | |
) | |
depth_button.click( | |
fn = infer_depth, | |
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength], | |
outputs = [result] | |
) | |
Kolors.queue().launch(debug=True) | |