Spaces:
No application file
No application file
import os | |
import shutil | |
import zipfile | |
import numpy | |
import torchaudio | |
from hubert.pre_kmeans_hubert import CustomHubert | |
import torch | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def prepare(path): | |
""" | |
Put all the training data in one folder | |
:param path: The path to the training data, with 2 subdirectories with zips, "semantic" and "wav", with equal pairs in both directories | |
""" | |
path = os.path.abspath(path) | |
raw_data_paths = { | |
'semantic': os.path.join(path, 'semantic'), | |
'wav': os.path.join(path, 'wav') | |
} | |
prepared_path = os.path.join(path, 'prepared') | |
if not os.path.isdir(prepared_path): | |
os.mkdir(prepared_path) | |
offset = 0 | |
for zip_file in os.listdir(raw_data_paths['semantic']): | |
print(f'Extracting {os.path.basename(zip_file)}') | |
offset = extract_files({ | |
'semantic': os.path.join(raw_data_paths['semantic'], zip_file), | |
'wav': os.path.join(raw_data_paths['wav'], zip_file) | |
}, prepared_path, offset) | |
def extract_files(zip_files: dict[str, str], out: str, start_offset: int = 0) -> int: | |
new_offset = start_offset | |
with zipfile.ZipFile(zip_files['semantic'], 'r') as semantic_zip: | |
with zipfile.ZipFile(zip_files['wav'], 'r') as wav_zip: | |
for file in semantic_zip.infolist(): | |
for file2 in wav_zip.infolist(): | |
if ''.join(file.filename.split('.')[:-1]).lower() == ''.join(file2.filename.split('.')[:-1]): | |
semantic_zip.extract(file, out) | |
shutil.move(os.path.join(out, file.filename), os.path.join(out, f'{new_offset}_semantic.npy')) | |
wav_zip.extract(file2, out) | |
shutil.move(os.path.join(out, file2.filename), os.path.join(out, f'{new_offset}_wav.wav')) | |
new_offset += 1 | |
wav_zip.close() | |
semantic_zip.close() | |
return new_offset | |
def prepare2(path, model): | |
prepared = os.path.join(path, 'prepared') | |
ready = os.path.join(path, 'ready') | |
hubert_model = CustomHubert(checkpoint_path=model, device=device) | |
if not os.path.isdir(ready): | |
os.mkdir(ready) | |
wav_string = '_wav.wav' | |
sem_string = '_semantic.npy' | |
for input_file in os.listdir(prepared): | |
input_path = os.path.join(prepared, input_file) | |
if input_file.endswith(wav_string): | |
file_num = int(input_file[:-len(wav_string)]) | |
fname = f'{file_num}_semantic_features.npy' | |
print('Processing', input_file) | |
if os.path.isfile(fname): | |
continue | |
wav, sr = torchaudio.load(input_path) | |
wav = wav.to(device) | |
if wav.shape[0] == 2: # Stereo to mono if needed | |
wav = wav.mean(0, keepdim=True) | |
output = hubert_model.forward(wav, input_sample_hz=sr) | |
out_array = output.cpu().numpy() | |
numpy.save(os.path.join(ready, fname), out_array) | |
elif input_file.endswith(sem_string): | |
fname = os.path.join(ready, input_file) | |
if os.path.isfile(fname): | |
continue | |
shutil.copy(input_path, fname) | |
print('All set! We\'re ready to train!') | |