Spaces:
No application file
No application file
File size: 6,853 Bytes
b5dba8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
"""
Custom tokenizer model.
Author: https://www.github.com/gitmylo/
License: MIT
"""
import json
import os.path
from zipfile import ZipFile
import numpy
import torch
from torch import nn, optim
from torch.serialization import MAP_LOCATION
class CustomTokenizer(nn.Module):
def __init__(self, hidden_size=1024, input_size=768, output_size=10000, version=0):
super(CustomTokenizer, self).__init__()
next_size = input_size
if version == 0:
self.lstm = nn.LSTM(input_size, hidden_size, 2, batch_first=True)
next_size = hidden_size
if version == 1:
self.lstm = nn.LSTM(input_size, hidden_size, 2, batch_first=True)
self.intermediate = nn.Linear(hidden_size, 4096)
next_size = 4096
self.fc = nn.Linear(next_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
self.optimizer: optim.Optimizer = None
self.lossfunc = nn.CrossEntropyLoss()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.version = version
def forward(self, x):
x, _ = self.lstm(x)
if self.version == 1:
x = self.intermediate(x)
x = self.fc(x)
x = self.softmax(x)
return x
@torch.no_grad()
def get_token(self, x):
"""
Used to get the token for the first
:param x: An array with shape (N, input_size) where N is a whole number greater or equal to 1, and input_size is the input size used when creating the model.
:return: An array with shape (N,) where N is the same as N from the input. Every number in the array is a whole number in range 0...output_size - 1 where output_size is the output size used when creating the model.
"""
return torch.argmax(self(x), dim=1)
def prepare_training(self):
self.optimizer = optim.Adam(self.parameters(), 0.001)
def train_step(self, x_train, y_train, log_loss=False):
# y_train = y_train[:-1]
# y_train = y_train[1:]
optimizer = self.optimizer
lossfunc = self.lossfunc
# Zero the gradients
self.zero_grad()
# Forward pass
y_pred = self(x_train)
y_train_len = len(y_train)
y_pred_len = y_pred.shape[0]
if y_train_len > y_pred_len:
diff = y_train_len - y_pred_len
y_train = y_train[diff:]
elif y_train_len < y_pred_len:
diff = y_pred_len - y_train_len
y_pred = y_pred[:-diff, :]
y_train_hot = torch.zeros(len(y_train), self.output_size)
y_train_hot[range(len(y_train)), y_train] = 1
y_train_hot = y_train_hot.to('cuda')
# Calculate the loss
loss = lossfunc(y_pred, y_train_hot)
# Print loss
if log_loss:
print('Loss', loss.item())
# Backward pass
loss.backward()
# Update the weights
optimizer.step()
def save(self, path):
info_path = '.'.join(os.path.basename(path).split('.')[:-1]) + '/.info'
torch.save(self.state_dict(), path)
data_from_model = Data(self.input_size, self.hidden_size, self.output_size, self.version)
with ZipFile(path, 'a') as model_zip:
model_zip.writestr(info_path, data_from_model.save())
model_zip.close()
@staticmethod
def load_from_checkpoint(path, map_location: MAP_LOCATION = None):
old = True
with ZipFile(path) as model_zip:
filesMatch = [file for file in model_zip.namelist() if file.endswith('/.info')]
file = filesMatch[0] if filesMatch else None
if file:
old = False
data_from_model = Data.load(model_zip.read(file).decode('utf-8'))
model_zip.close()
if old:
model = CustomTokenizer()
else:
model = CustomTokenizer(data_from_model.hidden_size, data_from_model.input_size, data_from_model.output_size, data_from_model.version)
model.load_state_dict(torch.load(path, map_location=map_location))
if map_location:
model = model.to(map_location)
return model
class Data:
input_size: int
hidden_size: int
output_size: int
version: int
def __init__(self, input_size=768, hidden_size=1024, output_size=10000, version=0):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.version = version
@staticmethod
def load(string):
data = json.loads(string)
return Data(data['input_size'], data['hidden_size'], data['output_size'], data['version'])
def save(self):
data = {
'input_size': self.input_size,
'hidden_size': self.hidden_size,
'output_size': self.output_size,
'version': self.version,
}
return json.dumps(data)
def auto_train(data_path, save_path='model.pth', load_model: str | None = None, save_epochs=1):
data_x, data_y = {}, {}
if load_model and os.path.isfile(load_model):
print('Loading model from', load_model)
model_training = CustomTokenizer.load_from_checkpoint(load_model, 'cuda')
else:
print('Creating new model.')
model_training = CustomTokenizer(version=1).to('cuda')
save_path = os.path.join(data_path, save_path)
base_save_path = '.'.join(save_path.split('.')[:-1])
sem_string = '_semantic.npy'
feat_string = '_semantic_features.npy'
ready = os.path.join(data_path, 'ready')
for input_file in os.listdir(ready):
full_path = os.path.join(ready, input_file)
try:
prefix = input_file.split("_")[0]
number = int(prefix)
except ValueError as e:
raise e
if input_file.endswith(sem_string):
data_y[number] = numpy.load(full_path)
elif input_file.endswith(feat_string):
data_x[number] = numpy.load(full_path)
model_training.prepare_training()
epoch = 1
while 1:
for i in range(save_epochs):
j = 0
for i in range(max(len(data_x), len(data_y))):
x = data_x.get(i)
y = data_y.get(i)
if x is None or y is None:
print(f'The training data does not match. key={i}')
continue
model_training.train_step(torch.tensor(x).to('cuda'), torch.tensor(y).to('cuda'), j % 50 == 0) # Print loss every 50 steps
j += 1
save_p = save_path
save_p_2 = f'{base_save_path}_epoch_{epoch}.pth'
model_training.save(save_p)
model_training.save(save_p_2)
print(f'Epoch {epoch} completed')
epoch += 1
|