File size: 7,383 Bytes
a9cce51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\panuk\\anaconda3\\envs\\SolutionsInPR\\Lib\\site-packages\\transformers\\tokenization_utils_base.py:1617: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be deprecated in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "# Load model directly\n",
    "from transformers import AutoTokenizer, AutoModelForSeq2SeqLM\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"facebook/bart-large-cnn\")\n",
    "model = AutoModelForSeq2SeqLM.from_pretrained(\"facebook/bart-large-cnn\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "BartForConditionalGeneration(\n",
       "  (model): BartModel(\n",
       "    (shared): BartScaledWordEmbedding(50264, 1024, padding_idx=1)\n",
       "    (encoder): BartEncoder(\n",
       "      (embed_tokens): BartScaledWordEmbedding(50264, 1024, padding_idx=1)\n",
       "      (embed_positions): BartLearnedPositionalEmbedding(1026, 1024)\n",
       "      (layers): ModuleList(\n",
       "        (0-11): 12 x BartEncoderLayer(\n",
       "          (self_attn): BartSdpaAttention(\n",
       "            (k_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (v_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (q_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (out_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "          )\n",
       "          (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
       "          (activation_fn): GELUActivation()\n",
       "          (fc1): Linear(in_features=1024, out_features=4096, bias=True)\n",
       "          (fc2): Linear(in_features=4096, out_features=1024, bias=True)\n",
       "          (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
       "        )\n",
       "      )\n",
       "      (layernorm_embedding): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
       "    )\n",
       "    (decoder): BartDecoder(\n",
       "      (embed_tokens): BartScaledWordEmbedding(50264, 1024, padding_idx=1)\n",
       "      (embed_positions): BartLearnedPositionalEmbedding(1026, 1024)\n",
       "      (layers): ModuleList(\n",
       "        (0-11): 12 x BartDecoderLayer(\n",
       "          (self_attn): BartSdpaAttention(\n",
       "            (k_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (v_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (q_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (out_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "          )\n",
       "          (activation_fn): GELUActivation()\n",
       "          (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
       "          (encoder_attn): BartSdpaAttention(\n",
       "            (k_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (v_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (q_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "            (out_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
       "          )\n",
       "          (encoder_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
       "          (fc1): Linear(in_features=1024, out_features=4096, bias=True)\n",
       "          (fc2): Linear(in_features=4096, out_features=1024, bias=True)\n",
       "          (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
       "        )\n",
       "      )\n",
       "      (layernorm_embedding): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
       "    )\n",
       "  )\n",
       "  (lm_head): Linear(in_features=1024, out_features=50264, bias=False)\n",
       ")"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import torch\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "model.to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7861\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\panuk\\anaconda3\\envs\\SolutionsInPR\\Lib\\site-packages\\gradio\\analytics.py:106: UserWarning: IMPORTANT: You are using gradio version 4.44.1, however version 5.0.1 is available, please upgrade. \n",
      "--------\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on public URL: https://1fe44b84e4bdd88e83.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://1fe44b84e4bdd88e83.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "def summarize(text):\n",
    "    inputs = tokenizer([text], max_length=1024, return_tensors=\"pt\")\n",
    "    summary_ids = model.generate(inputs[\"input_ids\"], num_beams=2, min_length=0, max_length=100)\n",
    "    return tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
    "\n",
    "import gradio as gr\n",
    "\n",
    "iface = gr.Interface(\n",
    "    fn=summarize,\n",
    "    inputs=gr.Textbox(label=\"Text to summarize\"),\n",
    "    outputs=[gr.Textbox(label=\"Summary\")],\n",
    "    title='Summarize text'\n",
    ")\n",
    "\n",
    "iface.launch(share=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "SolutionsInPR",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}